Properties

Label 2-103428-1.1-c1-0-30
Degree $2$
Conductor $103428$
Sign $1$
Analytic cond. $825.876$
Root an. cond. $28.7380$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·11-s + 17-s − 2·19-s − 8·23-s − 5·25-s − 6·29-s + 4·31-s − 8·41-s − 8·43-s − 2·47-s − 7·49-s − 10·53-s − 6·59-s + 6·61-s + 14·67-s + 4·73-s − 8·79-s − 6·83-s + 14·89-s − 8·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 1.20·11-s + 0.242·17-s − 0.458·19-s − 1.66·23-s − 25-s − 1.11·29-s + 0.718·31-s − 1.24·41-s − 1.21·43-s − 0.291·47-s − 49-s − 1.37·53-s − 0.781·59-s + 0.768·61-s + 1.71·67-s + 0.468·73-s − 0.900·79-s − 0.658·83-s + 1.48·89-s − 0.812·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 103428 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 103428 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(103428\)    =    \(2^{2} \cdot 3^{2} \cdot 13^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(825.876\)
Root analytic conductor: \(28.7380\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 103428,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 \)
17 \( 1 - T \)
good5 \( 1 + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 + 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 + 2 T + p T^{2} \)
53 \( 1 + 10 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 6 T + p T^{2} \)
67 \( 1 - 14 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 - 14 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.14036941826513, −13.71970868637730, −13.19485105819244, −12.81180566553131, −12.31594436748843, −11.67340361099245, −11.37634541891120, −10.77112316494211, −10.12552900937330, −9.889496271713330, −9.483697895450507, −8.492614530672672, −8.278822631416714, −7.787447998892146, −7.335430261215389, −6.527369270493040, −6.149553794555361, −5.570541149369850, −4.980364700963020, −4.566402252990148, −3.627236460884990, −3.465844167908392, −2.465436294771985, −2.043128339928795, −1.382634312991862, 0, 0, 1.382634312991862, 2.043128339928795, 2.465436294771985, 3.465844167908392, 3.627236460884990, 4.566402252990148, 4.980364700963020, 5.570541149369850, 6.149553794555361, 6.527369270493040, 7.335430261215389, 7.787447998892146, 8.278822631416714, 8.492614530672672, 9.483697895450507, 9.889496271713330, 10.12552900937330, 10.77112316494211, 11.37634541891120, 11.67340361099245, 12.31594436748843, 12.81180566553131, 13.19485105819244, 13.71970868637730, 14.14036941826513

Graph of the $Z$-function along the critical line