Properties

Label 2-1035-1.1-c1-0-12
Degree $2$
Conductor $1035$
Sign $1$
Analytic cond. $8.26451$
Root an. cond. $2.87480$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.50·2-s + 4.25·4-s − 5-s + 3.78·7-s − 5.63·8-s + 2.50·10-s + 4.47·11-s + 5.13·13-s − 9.47·14-s + 5.59·16-s + 6.39·17-s − 7.47·19-s − 4.25·20-s − 11.1·22-s + 23-s + 25-s − 12.8·26-s + 16.1·28-s + 4.92·29-s − 1.25·31-s − 2.70·32-s − 15.9·34-s − 3.78·35-s + 6.54·37-s + 18.6·38-s + 5.63·40-s − 9.19·41-s + ⋯
L(s)  = 1  − 1.76·2-s + 2.12·4-s − 0.447·5-s + 1.43·7-s − 1.99·8-s + 0.790·10-s + 1.34·11-s + 1.42·13-s − 2.53·14-s + 1.39·16-s + 1.55·17-s − 1.71·19-s − 0.951·20-s − 2.38·22-s + 0.208·23-s + 0.200·25-s − 2.51·26-s + 3.04·28-s + 0.914·29-s − 0.225·31-s − 0.478·32-s − 2.74·34-s − 0.640·35-s + 1.07·37-s + 3.03·38-s + 0.891·40-s − 1.43·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1035 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1035 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1035\)    =    \(3^{2} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(8.26451\)
Root analytic conductor: \(2.87480\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1035,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.9136370037\)
\(L(\frac12)\) \(\approx\) \(0.9136370037\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + T \)
23 \( 1 - T \)
good2 \( 1 + 2.50T + 2T^{2} \)
7 \( 1 - 3.78T + 7T^{2} \)
11 \( 1 - 4.47T + 11T^{2} \)
13 \( 1 - 5.13T + 13T^{2} \)
17 \( 1 - 6.39T + 17T^{2} \)
19 \( 1 + 7.47T + 19T^{2} \)
29 \( 1 - 4.92T + 29T^{2} \)
31 \( 1 + 1.25T + 31T^{2} \)
37 \( 1 - 6.54T + 37T^{2} \)
41 \( 1 + 9.19T + 41T^{2} \)
43 \( 1 + 3.17T + 43T^{2} \)
47 \( 1 + 6.71T + 47T^{2} \)
53 \( 1 + 11.3T + 53T^{2} \)
59 \( 1 - 3.65T + 59T^{2} \)
61 \( 1 + 8.98T + 61T^{2} \)
67 \( 1 - 15.1T + 67T^{2} \)
71 \( 1 - 8.33T + 71T^{2} \)
73 \( 1 + 1.13T + 73T^{2} \)
79 \( 1 + 15.7T + 79T^{2} \)
83 \( 1 + 3.06T + 83T^{2} \)
89 \( 1 - 13.4T + 89T^{2} \)
97 \( 1 + 4.42T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.864286071096951083481560796846, −8.850896580751320863055417489817, −8.322013241680387449519295015188, −7.927016130413064271171768237938, −6.79365851185933202677802106522, −6.12182354194648317471966197534, −4.62569122328417452265991821032, −3.46498437054268546461572285335, −1.77850276655201039451453895012, −1.08371708456086627154792319917, 1.08371708456086627154792319917, 1.77850276655201039451453895012, 3.46498437054268546461572285335, 4.62569122328417452265991821032, 6.12182354194648317471966197534, 6.79365851185933202677802106522, 7.927016130413064271171768237938, 8.322013241680387449519295015188, 8.850896580751320863055417489817, 9.864286071096951083481560796846

Graph of the $Z$-function along the critical line