L(s) = 1 | − 2.50·2-s + 4.25·4-s − 5-s + 3.78·7-s − 5.63·8-s + 2.50·10-s + 4.47·11-s + 5.13·13-s − 9.47·14-s + 5.59·16-s + 6.39·17-s − 7.47·19-s − 4.25·20-s − 11.1·22-s + 23-s + 25-s − 12.8·26-s + 16.1·28-s + 4.92·29-s − 1.25·31-s − 2.70·32-s − 15.9·34-s − 3.78·35-s + 6.54·37-s + 18.6·38-s + 5.63·40-s − 9.19·41-s + ⋯ |
L(s) = 1 | − 1.76·2-s + 2.12·4-s − 0.447·5-s + 1.43·7-s − 1.99·8-s + 0.790·10-s + 1.34·11-s + 1.42·13-s − 2.53·14-s + 1.39·16-s + 1.55·17-s − 1.71·19-s − 0.951·20-s − 2.38·22-s + 0.208·23-s + 0.200·25-s − 2.51·26-s + 3.04·28-s + 0.914·29-s − 0.225·31-s − 0.478·32-s − 2.74·34-s − 0.640·35-s + 1.07·37-s + 3.03·38-s + 0.891·40-s − 1.43·41-s + ⋯ |
Λ(s)=(=(1035s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1035s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.9136370037 |
L(21) |
≈ |
0.9136370037 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+T |
| 23 | 1−T |
good | 2 | 1+2.50T+2T2 |
| 7 | 1−3.78T+7T2 |
| 11 | 1−4.47T+11T2 |
| 13 | 1−5.13T+13T2 |
| 17 | 1−6.39T+17T2 |
| 19 | 1+7.47T+19T2 |
| 29 | 1−4.92T+29T2 |
| 31 | 1+1.25T+31T2 |
| 37 | 1−6.54T+37T2 |
| 41 | 1+9.19T+41T2 |
| 43 | 1+3.17T+43T2 |
| 47 | 1+6.71T+47T2 |
| 53 | 1+11.3T+53T2 |
| 59 | 1−3.65T+59T2 |
| 61 | 1+8.98T+61T2 |
| 67 | 1−15.1T+67T2 |
| 71 | 1−8.33T+71T2 |
| 73 | 1+1.13T+73T2 |
| 79 | 1+15.7T+79T2 |
| 83 | 1+3.06T+83T2 |
| 89 | 1−13.4T+89T2 |
| 97 | 1+4.42T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.864286071096951083481560796846, −8.850896580751320863055417489817, −8.322013241680387449519295015188, −7.927016130413064271171768237938, −6.79365851185933202677802106522, −6.12182354194648317471966197534, −4.62569122328417452265991821032, −3.46498437054268546461572285335, −1.77850276655201039451453895012, −1.08371708456086627154792319917,
1.08371708456086627154792319917, 1.77850276655201039451453895012, 3.46498437054268546461572285335, 4.62569122328417452265991821032, 6.12182354194648317471966197534, 6.79365851185933202677802106522, 7.927016130413064271171768237938, 8.322013241680387449519295015188, 8.850896580751320863055417489817, 9.864286071096951083481560796846