Properties

Label 2-1035-1.1-c1-0-19
Degree $2$
Conductor $1035$
Sign $-1$
Analytic cond. $8.26451$
Root an. cond. $2.87480$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.32·2-s − 0.231·4-s − 5-s − 3.50·7-s + 2.96·8-s + 1.32·10-s + 0.659·11-s + 5.91·13-s + 4.65·14-s − 3.48·16-s − 0.844·17-s + 0.659·19-s + 0.231·20-s − 0.876·22-s + 23-s + 25-s − 7.85·26-s + 0.812·28-s − 1.59·29-s + 6.75·31-s − 1.30·32-s + 1.12·34-s + 3.50·35-s − 11.7·37-s − 0.876·38-s − 2.96·40-s − 6.40·41-s + ⋯
L(s)  = 1  − 0.940·2-s − 0.115·4-s − 0.447·5-s − 1.32·7-s + 1.04·8-s + 0.420·10-s + 0.198·11-s + 1.63·13-s + 1.24·14-s − 0.870·16-s − 0.204·17-s + 0.151·19-s + 0.0518·20-s − 0.186·22-s + 0.208·23-s + 0.200·25-s − 1.54·26-s + 0.153·28-s − 0.295·29-s + 1.21·31-s − 0.230·32-s + 0.192·34-s + 0.592·35-s − 1.93·37-s − 0.142·38-s − 0.469·40-s − 1.00·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1035 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1035 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1035\)    =    \(3^{2} \cdot 5 \cdot 23\)
Sign: $-1$
Analytic conductor: \(8.26451\)
Root analytic conductor: \(2.87480\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1035,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + T \)
23 \( 1 - T \)
good2 \( 1 + 1.32T + 2T^{2} \)
7 \( 1 + 3.50T + 7T^{2} \)
11 \( 1 - 0.659T + 11T^{2} \)
13 \( 1 - 5.91T + 13T^{2} \)
17 \( 1 + 0.844T + 17T^{2} \)
19 \( 1 - 0.659T + 19T^{2} \)
29 \( 1 + 1.59T + 29T^{2} \)
31 \( 1 - 6.75T + 31T^{2} \)
37 \( 1 + 11.7T + 37T^{2} \)
41 \( 1 + 6.40T + 41T^{2} \)
43 \( 1 + 9.47T + 43T^{2} \)
47 \( 1 + 6.88T + 47T^{2} \)
53 \( 1 + 6.64T + 53T^{2} \)
59 \( 1 - 4.97T + 59T^{2} \)
61 \( 1 - 5.78T + 61T^{2} \)
67 \( 1 - 8.31T + 67T^{2} \)
71 \( 1 - 3.63T + 71T^{2} \)
73 \( 1 + 13.9T + 73T^{2} \)
79 \( 1 - 1.02T + 79T^{2} \)
83 \( 1 - 8.27T + 83T^{2} \)
89 \( 1 + 17.6T + 89T^{2} \)
97 \( 1 + 8.34T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.536459176444697601927410166285, −8.566755606491236533339775438188, −8.290729113865955435769874305499, −6.95209444415982296854284717705, −6.48147426951550840825344547782, −5.19904895479398377103049729230, −3.94986416066646605210272588956, −3.23851115866038196686041551428, −1.41675639146642653919743358536, 0, 1.41675639146642653919743358536, 3.23851115866038196686041551428, 3.94986416066646605210272588956, 5.19904895479398377103049729230, 6.48147426951550840825344547782, 6.95209444415982296854284717705, 8.290729113865955435769874305499, 8.566755606491236533339775438188, 9.536459176444697601927410166285

Graph of the $Z$-function along the critical line