L(s) = 1 | − 1.32·2-s − 0.231·4-s − 5-s − 3.50·7-s + 2.96·8-s + 1.32·10-s + 0.659·11-s + 5.91·13-s + 4.65·14-s − 3.48·16-s − 0.844·17-s + 0.659·19-s + 0.231·20-s − 0.876·22-s + 23-s + 25-s − 7.85·26-s + 0.812·28-s − 1.59·29-s + 6.75·31-s − 1.30·32-s + 1.12·34-s + 3.50·35-s − 11.7·37-s − 0.876·38-s − 2.96·40-s − 6.40·41-s + ⋯ |
L(s) = 1 | − 0.940·2-s − 0.115·4-s − 0.447·5-s − 1.32·7-s + 1.04·8-s + 0.420·10-s + 0.198·11-s + 1.63·13-s + 1.24·14-s − 0.870·16-s − 0.204·17-s + 0.151·19-s + 0.0518·20-s − 0.186·22-s + 0.208·23-s + 0.200·25-s − 1.54·26-s + 0.153·28-s − 0.295·29-s + 1.21·31-s − 0.230·32-s + 0.192·34-s + 0.592·35-s − 1.93·37-s − 0.142·38-s − 0.469·40-s − 1.00·41-s + ⋯ |
Λ(s)=(=(1035s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1035s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+T |
| 23 | 1−T |
good | 2 | 1+1.32T+2T2 |
| 7 | 1+3.50T+7T2 |
| 11 | 1−0.659T+11T2 |
| 13 | 1−5.91T+13T2 |
| 17 | 1+0.844T+17T2 |
| 19 | 1−0.659T+19T2 |
| 29 | 1+1.59T+29T2 |
| 31 | 1−6.75T+31T2 |
| 37 | 1+11.7T+37T2 |
| 41 | 1+6.40T+41T2 |
| 43 | 1+9.47T+43T2 |
| 47 | 1+6.88T+47T2 |
| 53 | 1+6.64T+53T2 |
| 59 | 1−4.97T+59T2 |
| 61 | 1−5.78T+61T2 |
| 67 | 1−8.31T+67T2 |
| 71 | 1−3.63T+71T2 |
| 73 | 1+13.9T+73T2 |
| 79 | 1−1.02T+79T2 |
| 83 | 1−8.27T+83T2 |
| 89 | 1+17.6T+89T2 |
| 97 | 1+8.34T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.536459176444697601927410166285, −8.566755606491236533339775438188, −8.290729113865955435769874305499, −6.95209444415982296854284717705, −6.48147426951550840825344547782, −5.19904895479398377103049729230, −3.94986416066646605210272588956, −3.23851115866038196686041551428, −1.41675639146642653919743358536, 0,
1.41675639146642653919743358536, 3.23851115866038196686041551428, 3.94986416066646605210272588956, 5.19904895479398377103049729230, 6.48147426951550840825344547782, 6.95209444415982296854284717705, 8.290729113865955435769874305499, 8.566755606491236533339775438188, 9.536459176444697601927410166285