L(s) = 1 | + 2.61·2-s + 4.85·4-s + 5-s + 1.23·7-s + 7.47·8-s + 2.61·10-s + 3.23·11-s − 6.23·13-s + 3.23·14-s + 9.85·16-s − 2.47·17-s − 5.70·19-s + 4.85·20-s + 8.47·22-s + 23-s + 25-s − 16.3·26-s + 6.00·28-s + 0.527·29-s + 4.23·31-s + 10.8·32-s − 6.47·34-s + 1.23·35-s − 9.70·37-s − 14.9·38-s + 7.47·40-s + 7.47·41-s + ⋯ |
L(s) = 1 | + 1.85·2-s + 2.42·4-s + 0.447·5-s + 0.467·7-s + 2.64·8-s + 0.827·10-s + 0.975·11-s − 1.72·13-s + 0.864·14-s + 2.46·16-s − 0.599·17-s − 1.30·19-s + 1.08·20-s + 1.80·22-s + 0.208·23-s + 0.200·25-s − 3.20·26-s + 1.13·28-s + 0.0980·29-s + 0.760·31-s + 1.91·32-s − 1.10·34-s + 0.208·35-s − 1.59·37-s − 2.42·38-s + 1.18·40-s + 1.16·41-s + ⋯ |
Λ(s)=(=(1035s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1035s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
5.303228837 |
L(21) |
≈ |
5.303228837 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1−T |
| 23 | 1−T |
good | 2 | 1−2.61T+2T2 |
| 7 | 1−1.23T+7T2 |
| 11 | 1−3.23T+11T2 |
| 13 | 1+6.23T+13T2 |
| 17 | 1+2.47T+17T2 |
| 19 | 1+5.70T+19T2 |
| 29 | 1−0.527T+29T2 |
| 31 | 1−4.23T+31T2 |
| 37 | 1+9.70T+37T2 |
| 41 | 1−7.47T+41T2 |
| 43 | 1−3.70T+43T2 |
| 47 | 1+9.47T+47T2 |
| 53 | 1−6T+53T2 |
| 59 | 1+8.94T+59T2 |
| 61 | 1−12.1T+61T2 |
| 67 | 1−9.70T+67T2 |
| 71 | 1−6.23T+71T2 |
| 73 | 1+6.70T+73T2 |
| 79 | 1−8.76T+79T2 |
| 83 | 1−6.47T+83T2 |
| 89 | 1+2.76T+89T2 |
| 97 | 1+6.18T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.22230213966789659233711101689, −9.193635076160769045052030264163, −7.990866990432419619198521853498, −6.84992571650857851397512948085, −6.51178108616119320555298530601, −5.35327197858425933061173837693, −4.70127714638929670600053208422, −3.95826615543655299208560770771, −2.66088764077004621332134736837, −1.87973744359409733703097371343,
1.87973744359409733703097371343, 2.66088764077004621332134736837, 3.95826615543655299208560770771, 4.70127714638929670600053208422, 5.35327197858425933061173837693, 6.51178108616119320555298530601, 6.84992571650857851397512948085, 7.990866990432419619198521853498, 9.193635076160769045052030264163, 10.22230213966789659233711101689