Properties

Label 2-1035-1.1-c1-0-32
Degree $2$
Conductor $1035$
Sign $1$
Analytic cond. $8.26451$
Root an. cond. $2.87480$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.61·2-s + 4.85·4-s + 5-s + 1.23·7-s + 7.47·8-s + 2.61·10-s + 3.23·11-s − 6.23·13-s + 3.23·14-s + 9.85·16-s − 2.47·17-s − 5.70·19-s + 4.85·20-s + 8.47·22-s + 23-s + 25-s − 16.3·26-s + 6.00·28-s + 0.527·29-s + 4.23·31-s + 10.8·32-s − 6.47·34-s + 1.23·35-s − 9.70·37-s − 14.9·38-s + 7.47·40-s + 7.47·41-s + ⋯
L(s)  = 1  + 1.85·2-s + 2.42·4-s + 0.447·5-s + 0.467·7-s + 2.64·8-s + 0.827·10-s + 0.975·11-s − 1.72·13-s + 0.864·14-s + 2.46·16-s − 0.599·17-s − 1.30·19-s + 1.08·20-s + 1.80·22-s + 0.208·23-s + 0.200·25-s − 3.20·26-s + 1.13·28-s + 0.0980·29-s + 0.760·31-s + 1.91·32-s − 1.10·34-s + 0.208·35-s − 1.59·37-s − 2.42·38-s + 1.18·40-s + 1.16·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1035 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1035 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1035\)    =    \(3^{2} \cdot 5 \cdot 23\)
Sign: $1$
Analytic conductor: \(8.26451\)
Root analytic conductor: \(2.87480\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1035,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.303228837\)
\(L(\frac12)\) \(\approx\) \(5.303228837\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
23 \( 1 - T \)
good2 \( 1 - 2.61T + 2T^{2} \)
7 \( 1 - 1.23T + 7T^{2} \)
11 \( 1 - 3.23T + 11T^{2} \)
13 \( 1 + 6.23T + 13T^{2} \)
17 \( 1 + 2.47T + 17T^{2} \)
19 \( 1 + 5.70T + 19T^{2} \)
29 \( 1 - 0.527T + 29T^{2} \)
31 \( 1 - 4.23T + 31T^{2} \)
37 \( 1 + 9.70T + 37T^{2} \)
41 \( 1 - 7.47T + 41T^{2} \)
43 \( 1 - 3.70T + 43T^{2} \)
47 \( 1 + 9.47T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 + 8.94T + 59T^{2} \)
61 \( 1 - 12.1T + 61T^{2} \)
67 \( 1 - 9.70T + 67T^{2} \)
71 \( 1 - 6.23T + 71T^{2} \)
73 \( 1 + 6.70T + 73T^{2} \)
79 \( 1 - 8.76T + 79T^{2} \)
83 \( 1 - 6.47T + 83T^{2} \)
89 \( 1 + 2.76T + 89T^{2} \)
97 \( 1 + 6.18T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.22230213966789659233711101689, −9.193635076160769045052030264163, −7.990866990432419619198521853498, −6.84992571650857851397512948085, −6.51178108616119320555298530601, −5.35327197858425933061173837693, −4.70127714638929670600053208422, −3.95826615543655299208560770771, −2.66088764077004621332134736837, −1.87973744359409733703097371343, 1.87973744359409733703097371343, 2.66088764077004621332134736837, 3.95826615543655299208560770771, 4.70127714638929670600053208422, 5.35327197858425933061173837693, 6.51178108616119320555298530601, 6.84992571650857851397512948085, 7.990866990432419619198521853498, 9.193635076160769045052030264163, 10.22230213966789659233711101689

Graph of the $Z$-function along the critical line