L(s) = 1 | + 2.56·3-s − 0.561·5-s − 2.56·7-s + 3.56·9-s − 5.12·11-s + 13-s − 1.43·15-s + 5.68·17-s + 5.12·19-s − 6.56·21-s − 8·23-s − 4.68·25-s + 1.43·27-s − 2·29-s + 4·31-s − 13.1·33-s + 1.43·35-s + 9.68·37-s + 2.56·39-s − 3.12·41-s + 5.43·43-s − 2.00·45-s − 0.315·47-s − 0.438·49-s + 14.5·51-s + 3.12·53-s + 2.87·55-s + ⋯ |
L(s) = 1 | + 1.47·3-s − 0.251·5-s − 0.968·7-s + 1.18·9-s − 1.54·11-s + 0.277·13-s − 0.371·15-s + 1.37·17-s + 1.17·19-s − 1.43·21-s − 1.66·23-s − 0.936·25-s + 0.276·27-s − 0.371·29-s + 0.718·31-s − 2.28·33-s + 0.243·35-s + 1.59·37-s + 0.410·39-s − 0.487·41-s + 0.829·43-s − 0.298·45-s − 0.0459·47-s − 0.0626·49-s + 2.03·51-s + 0.428·53-s + 0.387·55-s + ⋯ |
Λ(s)=(=(104s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(104s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.330995200 |
L(21) |
≈ |
1.330995200 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1−T |
good | 3 | 1−2.56T+3T2 |
| 5 | 1+0.561T+5T2 |
| 7 | 1+2.56T+7T2 |
| 11 | 1+5.12T+11T2 |
| 17 | 1−5.68T+17T2 |
| 19 | 1−5.12T+19T2 |
| 23 | 1+8T+23T2 |
| 29 | 1+2T+29T2 |
| 31 | 1−4T+31T2 |
| 37 | 1−9.68T+37T2 |
| 41 | 1+3.12T+41T2 |
| 43 | 1−5.43T+43T2 |
| 47 | 1+0.315T+47T2 |
| 53 | 1−3.12T+53T2 |
| 59 | 1−5.12T+59T2 |
| 61 | 1−11.1T+61T2 |
| 67 | 1+5.12T+67T2 |
| 71 | 1+7.68T+71T2 |
| 73 | 1+6T+73T2 |
| 79 | 1−8T+79T2 |
| 83 | 1−2.24T+83T2 |
| 89 | 1−10T+89T2 |
| 97 | 1+8.24T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.71753072328683946346817848159, −13.10195645373867280775639021405, −11.90591244910145441082720776956, −10.13223292975874914445498474652, −9.587407953010303947547664738248, −8.098504966471858535674901672523, −7.61495739064935920384504857216, −5.74788173249571342817361812177, −3.72784241969437990537506006035, −2.68088295258062156328134462169,
2.68088295258062156328134462169, 3.72784241969437990537506006035, 5.74788173249571342817361812177, 7.61495739064935920384504857216, 8.098504966471858535674901672523, 9.587407953010303947547664738248, 10.13223292975874914445498474652, 11.90591244910145441082720776956, 13.10195645373867280775639021405, 13.71753072328683946346817848159