Properties

Label 2-104-1.1-c1-0-2
Degree $2$
Conductor $104$
Sign $1$
Analytic cond. $0.830444$
Root an. cond. $0.911287$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.56·3-s − 0.561·5-s − 2.56·7-s + 3.56·9-s − 5.12·11-s + 13-s − 1.43·15-s + 5.68·17-s + 5.12·19-s − 6.56·21-s − 8·23-s − 4.68·25-s + 1.43·27-s − 2·29-s + 4·31-s − 13.1·33-s + 1.43·35-s + 9.68·37-s + 2.56·39-s − 3.12·41-s + 5.43·43-s − 2.00·45-s − 0.315·47-s − 0.438·49-s + 14.5·51-s + 3.12·53-s + 2.87·55-s + ⋯
L(s)  = 1  + 1.47·3-s − 0.251·5-s − 0.968·7-s + 1.18·9-s − 1.54·11-s + 0.277·13-s − 0.371·15-s + 1.37·17-s + 1.17·19-s − 1.43·21-s − 1.66·23-s − 0.936·25-s + 0.276·27-s − 0.371·29-s + 0.718·31-s − 2.28·33-s + 0.243·35-s + 1.59·37-s + 0.410·39-s − 0.487·41-s + 0.829·43-s − 0.298·45-s − 0.0459·47-s − 0.0626·49-s + 2.03·51-s + 0.428·53-s + 0.387·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(104\)    =    \(2^{3} \cdot 13\)
Sign: $1$
Analytic conductor: \(0.830444\)
Root analytic conductor: \(0.911287\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 104,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.330995200\)
\(L(\frac12)\) \(\approx\) \(1.330995200\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 - T \)
good3 \( 1 - 2.56T + 3T^{2} \)
5 \( 1 + 0.561T + 5T^{2} \)
7 \( 1 + 2.56T + 7T^{2} \)
11 \( 1 + 5.12T + 11T^{2} \)
17 \( 1 - 5.68T + 17T^{2} \)
19 \( 1 - 5.12T + 19T^{2} \)
23 \( 1 + 8T + 23T^{2} \)
29 \( 1 + 2T + 29T^{2} \)
31 \( 1 - 4T + 31T^{2} \)
37 \( 1 - 9.68T + 37T^{2} \)
41 \( 1 + 3.12T + 41T^{2} \)
43 \( 1 - 5.43T + 43T^{2} \)
47 \( 1 + 0.315T + 47T^{2} \)
53 \( 1 - 3.12T + 53T^{2} \)
59 \( 1 - 5.12T + 59T^{2} \)
61 \( 1 - 11.1T + 61T^{2} \)
67 \( 1 + 5.12T + 67T^{2} \)
71 \( 1 + 7.68T + 71T^{2} \)
73 \( 1 + 6T + 73T^{2} \)
79 \( 1 - 8T + 79T^{2} \)
83 \( 1 - 2.24T + 83T^{2} \)
89 \( 1 - 10T + 89T^{2} \)
97 \( 1 + 8.24T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.71753072328683946346817848159, −13.10195645373867280775639021405, −11.90591244910145441082720776956, −10.13223292975874914445498474652, −9.587407953010303947547664738248, −8.098504966471858535674901672523, −7.61495739064935920384504857216, −5.74788173249571342817361812177, −3.72784241969437990537506006035, −2.68088295258062156328134462169, 2.68088295258062156328134462169, 3.72784241969437990537506006035, 5.74788173249571342817361812177, 7.61495739064935920384504857216, 8.098504966471858535674901672523, 9.587407953010303947547664738248, 10.13223292975874914445498474652, 11.90591244910145441082720776956, 13.10195645373867280775639021405, 13.71753072328683946346817848159

Graph of the $Z$-function along the critical line