L(s) = 1 | − 2-s − 3-s + 4-s + 5-s + 6-s + 7-s − 8-s − 10-s − 12-s − 13-s − 14-s − 15-s + 16-s − 17-s + 20-s − 21-s + 24-s + 26-s + 27-s + 28-s + 30-s − 2·31-s − 32-s + 34-s + 35-s + 37-s + 39-s + ⋯ |
L(s) = 1 | − 2-s − 3-s + 4-s + 5-s + 6-s + 7-s − 8-s − 10-s − 12-s − 13-s − 14-s − 15-s + 16-s − 17-s + 20-s − 21-s + 24-s + 26-s + 27-s + 28-s + 30-s − 2·31-s − 32-s + 34-s + 35-s + 37-s + 39-s + ⋯ |
Λ(s)=(=(104s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(104s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
104
= 23⋅13
|
Sign: |
1
|
Analytic conductor: |
0.0519027 |
Root analytic conductor: |
0.227821 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ104(51,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 104, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.3506445621 |
L(21) |
≈ |
0.3506445621 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 13 | 1+T |
good | 3 | 1+T+T2 |
| 5 | 1−T+T2 |
| 7 | 1−T+T2 |
| 11 | (1−T)(1+T) |
| 17 | 1+T+T2 |
| 19 | (1−T)(1+T) |
| 23 | (1−T)(1+T) |
| 29 | (1−T)(1+T) |
| 31 | (1+T)2 |
| 37 | 1−T+T2 |
| 41 | (1−T)(1+T) |
| 43 | 1+T+T2 |
| 47 | 1−T+T2 |
| 53 | (1−T)(1+T) |
| 59 | (1−T)(1+T) |
| 61 | (1−T)(1+T) |
| 67 | (1−T)(1+T) |
| 71 | 1−T+T2 |
| 73 | (1−T)(1+T) |
| 79 | (1−T)(1+T) |
| 83 | (1−T)(1+T) |
| 89 | (1−T)(1+T) |
| 97 | (1−T)(1+T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.21903403686422288216786219204, −12.69759417877772506687250298073, −11.53875891143008359430010850022, −10.91362787156601425843494571816, −9.849520919914033047471247341525, −8.768893274904782034971084298372, −7.37748796465981917417358202634, −6.13973319085271586429221786246, −5.11000336544565001207901214497, −2.09431808749519266596519118860,
2.09431808749519266596519118860, 5.11000336544565001207901214497, 6.13973319085271586429221786246, 7.37748796465981917417358202634, 8.768893274904782034971084298372, 9.849520919914033047471247341525, 10.91362787156601425843494571816, 11.53875891143008359430010850022, 12.69759417877772506687250298073, 14.21903403686422288216786219204