L(s) = 1 | + (0.366 − 1.36i)2-s + (0.633 + 0.366i)3-s + (−1.73 − i)4-s + 3.73·5-s + (0.732 − 0.732i)6-s + (−3 + 1.73i)7-s + (−2 + 1.99i)8-s + (−1.23 − 2.13i)9-s + (1.36 − 5.09i)10-s + (1 − 1.73i)11-s + (−0.732 − 1.26i)12-s + (−2.59 + 2.5i)13-s + (1.26 + 4.73i)14-s + (2.36 + 1.36i)15-s + (1.99 + 3.46i)16-s + (0.232 + 0.401i)17-s + ⋯ |
L(s) = 1 | + (0.258 − 0.965i)2-s + (0.366 + 0.211i)3-s + (−0.866 − 0.5i)4-s + 1.66·5-s + (0.298 − 0.298i)6-s + (−1.13 + 0.654i)7-s + (−0.707 + 0.707i)8-s + (−0.410 − 0.711i)9-s + (0.431 − 1.61i)10-s + (0.301 − 0.522i)11-s + (−0.211 − 0.366i)12-s + (−0.720 + 0.693i)13-s + (0.338 + 1.26i)14-s + (0.610 + 0.352i)15-s + (0.499 + 0.866i)16-s + (0.0562 + 0.0974i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.494 + 0.869i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.494 + 0.869i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.10059 - 0.640144i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.10059 - 0.640144i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.366 + 1.36i)T \) |
| 13 | \( 1 + (2.59 - 2.5i)T \) |
good | 3 | \( 1 + (-0.633 - 0.366i)T + (1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 - 3.73T + 5T^{2} \) |
| 7 | \( 1 + (3 - 1.73i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-0.232 - 0.401i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.633 - 1.09i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (4.09 - 7.09i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.59 - 1.5i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 4.73iT - 31T^{2} \) |
| 37 | \( 1 + (-2.13 + 3.69i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (7.96 + 4.59i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.19 + 1.26i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 6.73iT - 47T^{2} \) |
| 53 | \( 1 - 3.92iT - 53T^{2} \) |
| 59 | \( 1 + (-0.267 - 0.464i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.866 + 0.5i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.63 + 6.29i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-8.02 + 4.63i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 1.73iT - 73T^{2} \) |
| 79 | \( 1 + 10.3T + 79T^{2} \) |
| 83 | \( 1 - 1.46T + 83T^{2} \) |
| 89 | \( 1 + (-6.46 - 3.73i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (5.19 - 3i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.68487214625966252566828586197, −12.58792125577513754843320534867, −11.69272639658502696953682085000, −10.06997274265500595141798590178, −9.512756683316004384601837538598, −8.908559251459995551990744801681, −6.30479423701509434950843452068, −5.55034809440366847308401048876, −3.50044679182669776362616364966, −2.22246397514802082514205269828,
2.79563494400777199708628505245, 4.88613071800989277155250540128, 6.14559647065851798915674748456, 7.00963515152245142485097021304, 8.408860199936460454095466567285, 9.702696483346020277062097088550, 10.20821305767706023121690391563, 12.55157854028107888660076389757, 13.23259971866806694876623277241, 13.98495319258192499784782143244