Properties

Label 2-105-1.1-c9-0-18
Degree $2$
Conductor $105$
Sign $-1$
Analytic cond. $54.0787$
Root an. cond. $7.35382$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 27.3·2-s − 81·3-s + 237.·4-s + 625·5-s + 2.21e3·6-s + 2.40e3·7-s + 7.51e3·8-s + 6.56e3·9-s − 1.71e4·10-s − 9.14e4·11-s − 1.92e4·12-s − 7.33e4·13-s − 6.57e4·14-s − 5.06e4·15-s − 3.27e5·16-s + 4.45e5·17-s − 1.79e5·18-s + 4.98e5·19-s + 1.48e5·20-s − 1.94e5·21-s + 2.50e6·22-s − 1.05e6·23-s − 6.09e5·24-s + 3.90e5·25-s + 2.00e6·26-s − 5.31e5·27-s + 5.69e5·28-s + ⋯
L(s)  = 1  − 1.20·2-s − 0.577·3-s + 0.463·4-s + 0.447·5-s + 0.698·6-s + 0.377·7-s + 0.649·8-s + 0.333·9-s − 0.541·10-s − 1.88·11-s − 0.267·12-s − 0.712·13-s − 0.457·14-s − 0.258·15-s − 1.24·16-s + 1.29·17-s − 0.403·18-s + 0.878·19-s + 0.207·20-s − 0.218·21-s + 2.27·22-s − 0.783·23-s − 0.374·24-s + 0.200·25-s + 0.861·26-s − 0.192·27-s + 0.175·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 105 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(105\)    =    \(3 \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(54.0787\)
Root analytic conductor: \(7.35382\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 105,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 81T \)
5 \( 1 - 625T \)
7 \( 1 - 2.40e3T \)
good2 \( 1 + 27.3T + 512T^{2} \)
11 \( 1 + 9.14e4T + 2.35e9T^{2} \)
13 \( 1 + 7.33e4T + 1.06e10T^{2} \)
17 \( 1 - 4.45e5T + 1.18e11T^{2} \)
19 \( 1 - 4.98e5T + 3.22e11T^{2} \)
23 \( 1 + 1.05e6T + 1.80e12T^{2} \)
29 \( 1 - 3.98e6T + 1.45e13T^{2} \)
31 \( 1 + 4.43e6T + 2.64e13T^{2} \)
37 \( 1 - 1.75e7T + 1.29e14T^{2} \)
41 \( 1 - 2.70e7T + 3.27e14T^{2} \)
43 \( 1 - 1.43e7T + 5.02e14T^{2} \)
47 \( 1 + 4.43e7T + 1.11e15T^{2} \)
53 \( 1 + 9.63e6T + 3.29e15T^{2} \)
59 \( 1 - 4.64e7T + 8.66e15T^{2} \)
61 \( 1 + 1.16e8T + 1.16e16T^{2} \)
67 \( 1 + 1.96e8T + 2.72e16T^{2} \)
71 \( 1 - 1.54e8T + 4.58e16T^{2} \)
73 \( 1 + 1.59e8T + 5.88e16T^{2} \)
79 \( 1 + 6.61e7T + 1.19e17T^{2} \)
83 \( 1 + 1.58e8T + 1.86e17T^{2} \)
89 \( 1 - 7.27e8T + 3.50e17T^{2} \)
97 \( 1 + 1.07e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.02965206176554671426563635561, −10.18558794327179800506988676031, −9.557876159042840983838327260600, −7.985441439536605435004717105584, −7.50159938193639292012110761261, −5.72133114470839120995784560999, −4.76920781973455673580245982478, −2.56314904915299764996316143633, −1.14978793354320743683906337796, 0, 1.14978793354320743683906337796, 2.56314904915299764996316143633, 4.76920781973455673580245982478, 5.72133114470839120995784560999, 7.50159938193639292012110761261, 7.985441439536605435004717105584, 9.557876159042840983838327260600, 10.18558794327179800506988676031, 11.02965206176554671426563635561

Graph of the $Z$-function along the critical line