Properties

Label 2-105e2-1.1-c1-0-16
Degree $2$
Conductor $11025$
Sign $1$
Analytic cond. $88.0350$
Root an. cond. $9.38270$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 2·11-s − 13-s − 4·16-s + 19-s + 4·22-s − 2·26-s − 4·29-s + 9·31-s − 8·32-s − 3·37-s + 2·38-s + 10·41-s − 5·43-s + 4·44-s − 6·47-s − 2·52-s + 12·53-s − 8·58-s + 12·59-s + 10·61-s + 18·62-s − 8·64-s + 5·67-s + 6·71-s + 3·73-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 0.603·11-s − 0.277·13-s − 16-s + 0.229·19-s + 0.852·22-s − 0.392·26-s − 0.742·29-s + 1.61·31-s − 1.41·32-s − 0.493·37-s + 0.324·38-s + 1.56·41-s − 0.762·43-s + 0.603·44-s − 0.875·47-s − 0.277·52-s + 1.64·53-s − 1.05·58-s + 1.56·59-s + 1.28·61-s + 2.28·62-s − 64-s + 0.610·67-s + 0.712·71-s + 0.351·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11025\)    =    \(3^{2} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(88.0350\)
Root analytic conductor: \(9.38270\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11025,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.497073416\)
\(L(\frac12)\) \(\approx\) \(4.497073416\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
good2 \( 1 - p T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 + T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 4 T + p T^{2} \)
31 \( 1 - 9 T + p T^{2} \)
37 \( 1 + 3 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 + 5 T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 5 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 - 3 T + p T^{2} \)
79 \( 1 + T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + 16 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.30327974501316, −15.77088208367699, −15.13756043914085, −14.71863529710234, −14.16354828067862, −13.69992059616406, −13.08309521323749, −12.62446257657459, −11.94074474769368, −11.56189889623774, −11.01258758001279, −10.03764871100801, −9.611615035496698, −8.771850003791022, −8.216967618378850, −7.230814823229727, −6.749655276700428, −6.084227448637340, −5.427385161911774, −4.854436244587081, −4.090734731637058, −3.618627563033512, −2.748416788514357, −2.056879787365213, −0.7832319802456344, 0.7832319802456344, 2.056879787365213, 2.748416788514357, 3.618627563033512, 4.090734731637058, 4.854436244587081, 5.427385161911774, 6.084227448637340, 6.749655276700428, 7.230814823229727, 8.216967618378850, 8.771850003791022, 9.611615035496698, 10.03764871100801, 11.01258758001279, 11.56189889623774, 11.94074474769368, 12.62446257657459, 13.08309521323749, 13.69992059616406, 14.16354828067862, 14.71863529710234, 15.13756043914085, 15.77088208367699, 16.30327974501316

Graph of the $Z$-function along the critical line