Properties

Label 2-105e2-1.1-c1-0-18
Degree $2$
Conductor $11025$
Sign $1$
Analytic cond. $88.0350$
Root an. cond. $9.38270$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 3·8-s + 2·11-s + 6·13-s − 16-s + 6·17-s + 6·19-s + 2·22-s − 4·23-s + 6·26-s − 8·29-s + 6·31-s + 5·32-s + 6·34-s + 6·37-s + 6·38-s − 6·41-s − 2·44-s − 4·46-s − 6·52-s + 2·53-s − 8·58-s − 12·59-s + 6·62-s + 7·64-s − 4·67-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 1.06·8-s + 0.603·11-s + 1.66·13-s − 1/4·16-s + 1.45·17-s + 1.37·19-s + 0.426·22-s − 0.834·23-s + 1.17·26-s − 1.48·29-s + 1.07·31-s + 0.883·32-s + 1.02·34-s + 0.986·37-s + 0.973·38-s − 0.937·41-s − 0.301·44-s − 0.589·46-s − 0.832·52-s + 0.274·53-s − 1.05·58-s − 1.56·59-s + 0.762·62-s + 7/8·64-s − 0.488·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11025\)    =    \(3^{2} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(88.0350\)
Root analytic conductor: \(9.38270\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11025,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.055775658\)
\(L(\frac12)\) \(\approx\) \(3.055775658\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
good2 \( 1 - T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 + 4 T + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 - 6 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 2 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 - 14 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.46013016401643, −15.87689909392640, −15.23063491818718, −14.69468231815389, −14.07692354919444, −13.60537236389792, −13.35373713450540, −12.43216857880638, −11.99213870197887, −11.52250586377623, −10.79139415353811, −9.944014044996831, −9.459889906081372, −8.949777106087611, −8.061708648427109, −7.775910130823162, −6.646171285232532, −6.020351097568707, −5.591082529048530, −4.886522192828421, −3.927730949920945, −3.600306650973034, −2.944056965893721, −1.559003025695040, −0.7959091287441254, 0.7959091287441254, 1.559003025695040, 2.944056965893721, 3.600306650973034, 3.927730949920945, 4.886522192828421, 5.591082529048530, 6.020351097568707, 6.646171285232532, 7.775910130823162, 8.061708648427109, 8.949777106087611, 9.459889906081372, 9.944014044996831, 10.79139415353811, 11.52250586377623, 11.99213870197887, 12.43216857880638, 13.35373713450540, 13.60537236389792, 14.07692354919444, 14.69468231815389, 15.23063491818718, 15.87689909392640, 16.46013016401643

Graph of the $Z$-function along the critical line