L(s) = 1 | + 2-s − 4-s − 3·8-s − 6·13-s − 16-s − 2·17-s + 8·19-s + 8·23-s − 6·26-s + 2·29-s − 4·31-s + 5·32-s − 2·34-s + 2·37-s + 8·38-s − 6·41-s − 4·43-s + 8·46-s − 8·47-s + 6·52-s + 10·53-s + 2·58-s + 4·59-s + 2·61-s − 4·62-s + 7·64-s − 4·67-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1/2·4-s − 1.06·8-s − 1.66·13-s − 1/4·16-s − 0.485·17-s + 1.83·19-s + 1.66·23-s − 1.17·26-s + 0.371·29-s − 0.718·31-s + 0.883·32-s − 0.342·34-s + 0.328·37-s + 1.29·38-s − 0.937·41-s − 0.609·43-s + 1.17·46-s − 1.16·47-s + 0.832·52-s + 1.37·53-s + 0.262·58-s + 0.520·59-s + 0.256·61-s − 0.508·62-s + 7/8·64-s − 0.488·67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 11025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 - T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 6 T + p T^{2} \) |
| 17 | \( 1 + 2 T + p T^{2} \) |
| 19 | \( 1 - 8 T + p T^{2} \) |
| 23 | \( 1 - 8 T + p T^{2} \) |
| 29 | \( 1 - 2 T + p T^{2} \) |
| 31 | \( 1 + 4 T + p T^{2} \) |
| 37 | \( 1 - 2 T + p T^{2} \) |
| 41 | \( 1 + 6 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 + 8 T + p T^{2} \) |
| 53 | \( 1 - 10 T + p T^{2} \) |
| 59 | \( 1 - 4 T + p T^{2} \) |
| 61 | \( 1 - 2 T + p T^{2} \) |
| 67 | \( 1 + 4 T + p T^{2} \) |
| 71 | \( 1 - 12 T + p T^{2} \) |
| 73 | \( 1 + 2 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 + 6 T + p T^{2} \) |
| 97 | \( 1 + 18 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.72237721915346, −16.26165633230791, −15.35211768463677, −14.92358325157380, −14.60859600193107, −13.78590832522480, −13.47483419320935, −12.82028051186910, −12.26600392062564, −11.76157312455521, −11.20975416035185, −10.29224097768517, −9.587978706342278, −9.372712987930725, −8.564417779484274, −7.844750921391283, −7.048775273905974, −6.691265488473300, −5.476489495379934, −5.179223014180048, −4.701886696483178, −3.763628836400713, −3.070859664274092, −2.453991589086128, −1.127880531938779, 0,
1.127880531938779, 2.453991589086128, 3.070859664274092, 3.763628836400713, 4.701886696483178, 5.179223014180048, 5.476489495379934, 6.691265488473300, 7.048775273905974, 7.844750921391283, 8.564417779484274, 9.372712987930725, 9.587978706342278, 10.29224097768517, 11.20975416035185, 11.76157312455521, 12.26600392062564, 12.82028051186910, 13.47483419320935, 13.78590832522480, 14.60859600193107, 14.92358325157380, 15.35211768463677, 16.26165633230791, 16.72237721915346