L(s) = 1 | − 2·4-s − 7·13-s + 4·16-s + 7·19-s + 7·31-s + 37-s − 5·43-s + 14·52-s − 14·61-s − 8·64-s − 11·67-s − 7·73-s − 14·76-s − 13·79-s + 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯ |
L(s) = 1 | − 4-s − 1.94·13-s + 16-s + 1.60·19-s + 1.25·31-s + 0.164·37-s − 0.762·43-s + 1.94·52-s − 1.79·61-s − 64-s − 1.34·67-s − 0.819·73-s − 1.60·76-s − 1.46·79-s + 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 11025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.081521113\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.081521113\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 7 T + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 19 | \( 1 - 7 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + p T^{2} \) |
| 31 | \( 1 - 7 T + p T^{2} \) |
| 37 | \( 1 - T + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 + 5 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 + 14 T + p T^{2} \) |
| 67 | \( 1 + 11 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 + 7 T + p T^{2} \) |
| 79 | \( 1 + 13 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 + p T^{2} \) |
| 97 | \( 1 - 14 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.61258139223701, −15.96957203593803, −15.18580870696054, −14.77938123448080, −14.11791316820387, −13.75354103870537, −13.12279074842885, −12.43814889379538, −11.95908325149761, −11.52468544963293, −10.35940226029709, −10.05066267034014, −9.476358465367494, −8.994350389100878, −8.165360561047153, −7.564214068400154, −7.137679194840246, −6.100722498393278, −5.402551153050883, −4.763923625670569, −4.402141274703869, −3.260457125717232, −2.776775483143016, −1.562264018334010, −0.4974465266779612,
0.4974465266779612, 1.562264018334010, 2.776775483143016, 3.260457125717232, 4.402141274703869, 4.763923625670569, 5.402551153050883, 6.100722498393278, 7.137679194840246, 7.564214068400154, 8.165360561047153, 8.994350389100878, 9.476358465367494, 10.05066267034014, 10.35940226029709, 11.52468544963293, 11.95908325149761, 12.43814889379538, 13.12279074842885, 13.75354103870537, 14.11791316820387, 14.77938123448080, 15.18580870696054, 15.96957203593803, 16.61258139223701