L(s) = 1 | − 2·4-s + 2·13-s + 4·16-s − 8·19-s + 7·31-s − 11·37-s − 5·43-s − 4·52-s + 61-s − 8·64-s + 16·67-s + 17·73-s + 16·76-s + 17·79-s − 19·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯ |
L(s) = 1 | − 4-s + 0.554·13-s + 16-s − 1.83·19-s + 1.25·31-s − 1.80·37-s − 0.762·43-s − 0.554·52-s + 0.128·61-s − 64-s + 1.95·67-s + 1.98·73-s + 1.83·76-s + 1.91·79-s − 1.92·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 11025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.157214051\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.157214051\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 - 2 T + p T^{2} \) |
| 17 | \( 1 + p T^{2} \) |
| 19 | \( 1 + 8 T + p T^{2} \) |
| 23 | \( 1 + p T^{2} \) |
| 29 | \( 1 + p T^{2} \) |
| 31 | \( 1 - 7 T + p T^{2} \) |
| 37 | \( 1 + 11 T + p T^{2} \) |
| 41 | \( 1 + p T^{2} \) |
| 43 | \( 1 + 5 T + p T^{2} \) |
| 47 | \( 1 + p T^{2} \) |
| 53 | \( 1 + p T^{2} \) |
| 59 | \( 1 + p T^{2} \) |
| 61 | \( 1 - T + p T^{2} \) |
| 67 | \( 1 - 16 T + p T^{2} \) |
| 71 | \( 1 + p T^{2} \) |
| 73 | \( 1 - 17 T + p T^{2} \) |
| 79 | \( 1 - 17 T + p T^{2} \) |
| 83 | \( 1 + p T^{2} \) |
| 89 | \( 1 + p T^{2} \) |
| 97 | \( 1 + 19 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−16.71714877920568, −15.85461877252992, −15.24792721216111, −14.86654960411351, −13.99485931529907, −13.76210028317134, −13.11108108909342, −12.48348278681751, −12.13708425747135, −11.14333733138538, −10.66354867121160, −10.04109888947759, −9.473812186944616, −8.637836266285948, −8.429203698586159, −7.798286048753875, −6.640940709654943, −6.417828232224431, −5.346933873496737, −4.923559575528694, −4.017938602216696, −3.656459207176328, −2.568476489958289, −1.605716865626998, −0.5121595037667615,
0.5121595037667615, 1.605716865626998, 2.568476489958289, 3.656459207176328, 4.017938602216696, 4.923559575528694, 5.346933873496737, 6.417828232224431, 6.640940709654943, 7.798286048753875, 8.429203698586159, 8.637836266285948, 9.473812186944616, 10.04109888947759, 10.66354867121160, 11.14333733138538, 12.13708425747135, 12.48348278681751, 13.11108108909342, 13.76210028317134, 13.99485931529907, 14.86654960411351, 15.24792721216111, 15.85461877252992, 16.71714877920568