Properties

Label 2-105e2-1.1-c1-0-6
Degree $2$
Conductor $11025$
Sign $1$
Analytic cond. $88.0350$
Root an. cond. $9.38270$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 3·8-s + 2·13-s − 16-s − 2·17-s − 6·19-s − 3·23-s + 2·26-s − 7·29-s − 2·31-s + 5·32-s − 2·34-s + 8·37-s − 6·38-s + 5·41-s − 7·43-s − 3·46-s − 2·52-s + 6·53-s − 7·58-s + 10·59-s − 7·61-s − 2·62-s + 7·64-s + 5·67-s + 2·68-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 1.06·8-s + 0.554·13-s − 1/4·16-s − 0.485·17-s − 1.37·19-s − 0.625·23-s + 0.392·26-s − 1.29·29-s − 0.359·31-s + 0.883·32-s − 0.342·34-s + 1.31·37-s − 0.973·38-s + 0.780·41-s − 1.06·43-s − 0.442·46-s − 0.277·52-s + 0.824·53-s − 0.919·58-s + 1.30·59-s − 0.896·61-s − 0.254·62-s + 7/8·64-s + 0.610·67-s + 0.242·68-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11025 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11025 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11025\)    =    \(3^{2} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(88.0350\)
Root analytic conductor: \(9.38270\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11025,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.628020810\)
\(L(\frac12)\) \(\approx\) \(1.628020810\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
good2 \( 1 - T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 + 7 T + p T^{2} \)
31 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 - 5 T + p T^{2} \)
43 \( 1 + 7 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 6 T + p T^{2} \)
59 \( 1 - 10 T + p T^{2} \)
61 \( 1 + 7 T + p T^{2} \)
67 \( 1 - 5 T + p T^{2} \)
71 \( 1 - 2 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 + 2 T + p T^{2} \)
83 \( 1 - 11 T + p T^{2} \)
89 \( 1 - 9 T + p T^{2} \)
97 \( 1 + 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.61926358749564, −15.74483563433124, −15.20945036879121, −14.69081782046047, −14.30815422810820, −13.46199092239385, −13.11040563926872, −12.76398231623780, −11.95432036059858, −11.40127309615421, −10.78649577153838, −10.08838712665351, −9.369696018187384, −8.860456871585890, −8.285201277706972, −7.608009193149179, −6.646885593873036, −6.119125883668494, −5.551567360977953, −4.759136833407733, −4.062283761536627, −3.698303783140454, −2.660833641933034, −1.864649498893109, −0.5168829589861634, 0.5168829589861634, 1.864649498893109, 2.660833641933034, 3.698303783140454, 4.062283761536627, 4.759136833407733, 5.551567360977953, 6.119125883668494, 6.646885593873036, 7.608009193149179, 8.285201277706972, 8.860456871585890, 9.369696018187384, 10.08838712665351, 10.78649577153838, 11.40127309615421, 11.95432036059858, 12.76398231623780, 13.11040563926872, 13.46199092239385, 14.30815422810820, 14.69081782046047, 15.20945036879121, 15.74483563433124, 16.61926358749564

Graph of the $Z$-function along the critical line