L(s) = 1 | + 2-s + 3·3-s + 4-s + 2·5-s + 3·6-s + 8-s + 6·9-s + 2·10-s − 11-s + 3·12-s − 7·13-s + 6·15-s + 16-s + 2·17-s + 6·18-s + 2·20-s − 22-s − 8·23-s + 3·24-s − 25-s − 7·26-s + 9·27-s − 5·29-s + 6·30-s + 4·31-s + 32-s − 3·33-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1.73·3-s + 1/2·4-s + 0.894·5-s + 1.22·6-s + 0.353·8-s + 2·9-s + 0.632·10-s − 0.301·11-s + 0.866·12-s − 1.94·13-s + 1.54·15-s + 1/4·16-s + 0.485·17-s + 1.41·18-s + 0.447·20-s − 0.213·22-s − 1.66·23-s + 0.612·24-s − 1/5·25-s − 1.37·26-s + 1.73·27-s − 0.928·29-s + 1.09·30-s + 0.718·31-s + 0.176·32-s − 0.522·33-s + ⋯ |
Λ(s)=(=(1078s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1078s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.685652829 |
L(21) |
≈ |
4.685652829 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 7 | 1 |
| 11 | 1+T |
good | 3 | 1−pT+pT2 |
| 5 | 1−2T+pT2 |
| 13 | 1+7T+pT2 |
| 17 | 1−2T+pT2 |
| 19 | 1+pT2 |
| 23 | 1+8T+pT2 |
| 29 | 1+5T+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1−4T+pT2 |
| 41 | 1−4T+pT2 |
| 43 | 1+8T+pT2 |
| 47 | 1−2T+pT2 |
| 53 | 1+6T+pT2 |
| 59 | 1−3T+pT2 |
| 61 | 1−T+pT2 |
| 67 | 1−9T+pT2 |
| 71 | 1+2T+pT2 |
| 73 | 1−4T+pT2 |
| 79 | 1−9T+pT2 |
| 83 | 1−6T+pT2 |
| 89 | 1−6T+pT2 |
| 97 | 1−7T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.856353077622187691368346097215, −9.232984660708510751075852428852, −7.949688248994453332985143052492, −7.66334045549742507331716148152, −6.56153010353145194477530352450, −5.46355028016127947092103451217, −4.50301199161709359138099430647, −3.48832092996576829359255750084, −2.43990333774251370043130333163, −2.00011124513055881492662257488,
2.00011124513055881492662257488, 2.43990333774251370043130333163, 3.48832092996576829359255750084, 4.50301199161709359138099430647, 5.46355028016127947092103451217, 6.56153010353145194477530352450, 7.66334045549742507331716148152, 7.949688248994453332985143052492, 9.232984660708510751075852428852, 9.856353077622187691368346097215