Properties

Label 2-1078-1.1-c1-0-29
Degree $2$
Conductor $1078$
Sign $1$
Analytic cond. $8.60787$
Root an. cond. $2.93391$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3·3-s + 4-s + 2·5-s + 3·6-s + 8-s + 6·9-s + 2·10-s − 11-s + 3·12-s − 7·13-s + 6·15-s + 16-s + 2·17-s + 6·18-s + 2·20-s − 22-s − 8·23-s + 3·24-s − 25-s − 7·26-s + 9·27-s − 5·29-s + 6·30-s + 4·31-s + 32-s − 3·33-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.73·3-s + 1/2·4-s + 0.894·5-s + 1.22·6-s + 0.353·8-s + 2·9-s + 0.632·10-s − 0.301·11-s + 0.866·12-s − 1.94·13-s + 1.54·15-s + 1/4·16-s + 0.485·17-s + 1.41·18-s + 0.447·20-s − 0.213·22-s − 1.66·23-s + 0.612·24-s − 1/5·25-s − 1.37·26-s + 1.73·27-s − 0.928·29-s + 1.09·30-s + 0.718·31-s + 0.176·32-s − 0.522·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1078 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1078 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1078\)    =    \(2 \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(8.60787\)
Root analytic conductor: \(2.93391\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1078,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.685652829\)
\(L(\frac12)\) \(\approx\) \(4.685652829\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
7 \( 1 \)
11 \( 1 + T \)
good3 \( 1 - p T + p T^{2} \)
5 \( 1 - 2 T + p T^{2} \)
13 \( 1 + 7 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 - 4 T + p T^{2} \)
43 \( 1 + 8 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 3 T + p T^{2} \)
61 \( 1 - T + p T^{2} \)
67 \( 1 - 9 T + p T^{2} \)
71 \( 1 + 2 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 - 9 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.856353077622187691368346097215, −9.232984660708510751075852428852, −7.949688248994453332985143052492, −7.66334045549742507331716148152, −6.56153010353145194477530352450, −5.46355028016127947092103451217, −4.50301199161709359138099430647, −3.48832092996576829359255750084, −2.43990333774251370043130333163, −2.00011124513055881492662257488, 2.00011124513055881492662257488, 2.43990333774251370043130333163, 3.48832092996576829359255750084, 4.50301199161709359138099430647, 5.46355028016127947092103451217, 6.56153010353145194477530352450, 7.66334045549742507331716148152, 7.949688248994453332985143052492, 9.232984660708510751075852428852, 9.856353077622187691368346097215

Graph of the $Z$-function along the critical line