L(s) = 1 | − 2-s + 4-s + 2.82·5-s − 8-s − 3·9-s − 2.82·10-s + 11-s − 5.65·13-s + 16-s − 2.82·17-s + 3·18-s − 8.48·19-s + 2.82·20-s − 22-s − 8·23-s + 3.00·25-s + 5.65·26-s − 6·29-s + 8.48·31-s − 32-s + 2.82·34-s − 3·36-s − 6·37-s + 8.48·38-s − 2.82·40-s + 8.48·41-s − 4·43-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s + 1.26·5-s − 0.353·8-s − 9-s − 0.894·10-s + 0.301·11-s − 1.56·13-s + 0.250·16-s − 0.685·17-s + 0.707·18-s − 1.94·19-s + 0.632·20-s − 0.213·22-s − 1.66·23-s + 0.600·25-s + 1.10·26-s − 1.11·29-s + 1.52·31-s − 0.176·32-s + 0.485·34-s − 0.5·36-s − 0.986·37-s + 1.37·38-s − 0.447·40-s + 1.32·41-s − 0.609·43-s + ⋯ |
Λ(s)=(=(1078s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1078s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 7 | 1 |
| 11 | 1−T |
good | 3 | 1+3T2 |
| 5 | 1−2.82T+5T2 |
| 13 | 1+5.65T+13T2 |
| 17 | 1+2.82T+17T2 |
| 19 | 1+8.48T+19T2 |
| 23 | 1+8T+23T2 |
| 29 | 1+6T+29T2 |
| 31 | 1−8.48T+31T2 |
| 37 | 1+6T+37T2 |
| 41 | 1−8.48T+41T2 |
| 43 | 1+4T+43T2 |
| 47 | 1−2.82T+47T2 |
| 53 | 1−6T+53T2 |
| 59 | 1−5.65T+59T2 |
| 61 | 1−5.65T+61T2 |
| 67 | 1+4T+67T2 |
| 71 | 1+71T2 |
| 73 | 1−8.48T+73T2 |
| 79 | 1+79T2 |
| 83 | 1−2.82T+83T2 |
| 89 | 1+11.3T+89T2 |
| 97 | 1+11.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.530730185409156455610738588161, −8.734877997248979398883447111660, −8.039633612488981166741343372411, −6.85101474999731051432473448282, −6.17053049575869876704436871049, −5.42267652915547103492609807415, −4.18712210120360699910405087214, −2.46348138242626626833794123960, −2.08526057766359163412999320943, 0,
2.08526057766359163412999320943, 2.46348138242626626833794123960, 4.18712210120360699910405087214, 5.42267652915547103492609807415, 6.17053049575869876704436871049, 6.85101474999731051432473448282, 8.039633612488981166741343372411, 8.734877997248979398883447111660, 9.530730185409156455610738588161