L(s) = 1 | + 5·5-s + 24.0·7-s + 2.95·11-s − 22.1·13-s − 76.0·17-s − 72.1·19-s − 176.·23-s + 25·25-s − 42.5·29-s − 327.·31-s + 120.·35-s + 182.·37-s − 154.·41-s + 173.·43-s − 338.·47-s + 236.·49-s + 26.5·53-s + 14.7·55-s + 391.·59-s − 191.·61-s − 110.·65-s − 507.·67-s + 576.·71-s − 390.·73-s + 71.2·77-s + 1.22e3·79-s − 247.·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 1.30·7-s + 0.0811·11-s − 0.473·13-s − 1.08·17-s − 0.870·19-s − 1.59·23-s + 0.200·25-s − 0.272·29-s − 1.89·31-s + 0.581·35-s + 0.809·37-s − 0.588·41-s + 0.615·43-s − 1.04·47-s + 0.690·49-s + 0.0688·53-s + 0.0362·55-s + 0.864·59-s − 0.401·61-s − 0.211·65-s − 0.925·67-s + 0.963·71-s − 0.625·73-s + 0.105·77-s + 1.73·79-s − 0.327·83-s + ⋯ |
Λ(s)=(=(1080s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1080s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−5T |
good | 7 | 1−24.0T+343T2 |
| 11 | 1−2.95T+1.33e3T2 |
| 13 | 1+22.1T+2.19e3T2 |
| 17 | 1+76.0T+4.91e3T2 |
| 19 | 1+72.1T+6.85e3T2 |
| 23 | 1+176.T+1.21e4T2 |
| 29 | 1+42.5T+2.43e4T2 |
| 31 | 1+327.T+2.97e4T2 |
| 37 | 1−182.T+5.06e4T2 |
| 41 | 1+154.T+6.89e4T2 |
| 43 | 1−173.T+7.95e4T2 |
| 47 | 1+338.T+1.03e5T2 |
| 53 | 1−26.5T+1.48e5T2 |
| 59 | 1−391.T+2.05e5T2 |
| 61 | 1+191.T+2.26e5T2 |
| 67 | 1+507.T+3.00e5T2 |
| 71 | 1−576.T+3.57e5T2 |
| 73 | 1+390.T+3.89e5T2 |
| 79 | 1−1.22e3T+4.93e5T2 |
| 83 | 1+247.T+5.71e5T2 |
| 89 | 1+1.50e3T+7.04e5T2 |
| 97 | 1−959.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.035664958008461470423023596572, −8.270344110527583338924910666038, −7.52345318262806028737014518240, −6.52251549683500906326761494322, −5.60735474978539539723798262400, −4.71962788640532675026696984438, −3.92601991362238562594339022162, −2.30172847567971195882660939865, −1.69285731331916044775571755629, 0,
1.69285731331916044775571755629, 2.30172847567971195882660939865, 3.92601991362238562594339022162, 4.71962788640532675026696984438, 5.60735474978539539723798262400, 6.52251549683500906326761494322, 7.52345318262806028737014518240, 8.270344110527583338924910666038, 9.035664958008461470423023596572