Properties

Label 2-1080-1.1-c3-0-47
Degree $2$
Conductor $1080$
Sign $-1$
Analytic cond. $63.7220$
Root an. cond. $7.98261$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·5-s + 24.0·7-s + 2.95·11-s − 22.1·13-s − 76.0·17-s − 72.1·19-s − 176.·23-s + 25·25-s − 42.5·29-s − 327.·31-s + 120.·35-s + 182.·37-s − 154.·41-s + 173.·43-s − 338.·47-s + 236.·49-s + 26.5·53-s + 14.7·55-s + 391.·59-s − 191.·61-s − 110.·65-s − 507.·67-s + 576.·71-s − 390.·73-s + 71.2·77-s + 1.22e3·79-s − 247.·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.30·7-s + 0.0811·11-s − 0.473·13-s − 1.08·17-s − 0.870·19-s − 1.59·23-s + 0.200·25-s − 0.272·29-s − 1.89·31-s + 0.581·35-s + 0.809·37-s − 0.588·41-s + 0.615·43-s − 1.04·47-s + 0.690·49-s + 0.0688·53-s + 0.0362·55-s + 0.864·59-s − 0.401·61-s − 0.211·65-s − 0.925·67-s + 0.963·71-s − 0.625·73-s + 0.105·77-s + 1.73·79-s − 0.327·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1080\)    =    \(2^{3} \cdot 3^{3} \cdot 5\)
Sign: $-1$
Analytic conductor: \(63.7220\)
Root analytic conductor: \(7.98261\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1080,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - 5T \)
good7 \( 1 - 24.0T + 343T^{2} \)
11 \( 1 - 2.95T + 1.33e3T^{2} \)
13 \( 1 + 22.1T + 2.19e3T^{2} \)
17 \( 1 + 76.0T + 4.91e3T^{2} \)
19 \( 1 + 72.1T + 6.85e3T^{2} \)
23 \( 1 + 176.T + 1.21e4T^{2} \)
29 \( 1 + 42.5T + 2.43e4T^{2} \)
31 \( 1 + 327.T + 2.97e4T^{2} \)
37 \( 1 - 182.T + 5.06e4T^{2} \)
41 \( 1 + 154.T + 6.89e4T^{2} \)
43 \( 1 - 173.T + 7.95e4T^{2} \)
47 \( 1 + 338.T + 1.03e5T^{2} \)
53 \( 1 - 26.5T + 1.48e5T^{2} \)
59 \( 1 - 391.T + 2.05e5T^{2} \)
61 \( 1 + 191.T + 2.26e5T^{2} \)
67 \( 1 + 507.T + 3.00e5T^{2} \)
71 \( 1 - 576.T + 3.57e5T^{2} \)
73 \( 1 + 390.T + 3.89e5T^{2} \)
79 \( 1 - 1.22e3T + 4.93e5T^{2} \)
83 \( 1 + 247.T + 5.71e5T^{2} \)
89 \( 1 + 1.50e3T + 7.04e5T^{2} \)
97 \( 1 - 959.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.035664958008461470423023596572, −8.270344110527583338924910666038, −7.52345318262806028737014518240, −6.52251549683500906326761494322, −5.60735474978539539723798262400, −4.71962788640532675026696984438, −3.92601991362238562594339022162, −2.30172847567971195882660939865, −1.69285731331916044775571755629, 0, 1.69285731331916044775571755629, 2.30172847567971195882660939865, 3.92601991362238562594339022162, 4.71962788640532675026696984438, 5.60735474978539539723798262400, 6.52251549683500906326761494322, 7.52345318262806028737014518240, 8.270344110527583338924910666038, 9.035664958008461470423023596572

Graph of the $Z$-function along the critical line