L(s) = 1 | + (−0.5 + 0.866i)5-s + (−1.86 − 3.23i)7-s + (2.73 + 4.73i)11-s + (−0.732 + 1.26i)13-s − 7.46·17-s − 2·19-s + (0.133 − 0.232i)23-s + (−0.499 − 0.866i)25-s + (4.23 + 7.33i)29-s + (1 − 1.73i)31-s + 3.73·35-s − 10.3·37-s + (−1.96 + 3.40i)41-s + (5.73 + 9.92i)43-s + (1.86 + 3.23i)47-s + ⋯ |
L(s) = 1 | + (−0.223 + 0.387i)5-s + (−0.705 − 1.22i)7-s + (0.823 + 1.42i)11-s + (−0.203 + 0.351i)13-s − 1.81·17-s − 0.458·19-s + (0.0279 − 0.0483i)23-s + (−0.0999 − 0.173i)25-s + (0.785 + 1.36i)29-s + (0.179 − 0.311i)31-s + 0.630·35-s − 1.70·37-s + (−0.306 + 0.531i)41-s + (0.874 + 1.51i)43-s + (0.272 + 0.471i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1080 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6239491700\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6239491700\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
good | 7 | \( 1 + (1.86 + 3.23i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.73 - 4.73i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.732 - 1.26i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 7.46T + 17T^{2} \) |
| 19 | \( 1 + 2T + 19T^{2} \) |
| 23 | \( 1 + (-0.133 + 0.232i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.23 - 7.33i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1 + 1.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + 10.3T + 37T^{2} \) |
| 41 | \( 1 + (1.96 - 3.40i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.73 - 9.92i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-1.86 - 3.23i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 6T + 53T^{2} \) |
| 59 | \( 1 + (3.19 - 5.53i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-0.767 - 1.33i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.86 - 8.42i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 2.53T + 71T^{2} \) |
| 73 | \( 1 + 6.92T + 73T^{2} \) |
| 79 | \( 1 + (4.26 + 7.39i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (1.40 + 2.42i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 3.92T + 89T^{2} \) |
| 97 | \( 1 + (2.46 + 4.26i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.23142241934004645927209797399, −9.418917396316539074774174283799, −8.659583141626784836386454775798, −7.31039571917350120949383216461, −6.93366075905501565320244440845, −6.32687809797563987872703316573, −4.53209715680901776536111674003, −4.26584033104075387218673488810, −2.99607191168199366347394650917, −1.63568201241005898827871350411,
0.26708532578271374096514364939, 2.14573448771341936091070718137, 3.21750272487700664190464266937, 4.24335343207621674679514631466, 5.41357006252683573814325483531, 6.19260814852499841284979275302, 6.83705245089892691540218865825, 8.285992034444571829552907365256, 8.800841032470035177337475043023, 9.262335065073245434679554905090