Properties

Label 2-1098-1.1-c1-0-0
Degree $2$
Conductor $1098$
Sign $1$
Analytic cond. $8.76757$
Root an. cond. $2.96100$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 1.39·5-s − 3.18·7-s − 8-s + 1.39·10-s − 0.323·11-s + 2.32·13-s + 3.18·14-s + 16-s − 1.72·17-s − 2.86·19-s − 1.39·20-s + 0.323·22-s + 6.50·23-s − 3.04·25-s − 2.32·26-s − 3.18·28-s − 0.0643·29-s + 5.10·31-s − 32-s + 1.72·34-s + 4.45·35-s + 8.98·37-s + 2.86·38-s + 1.39·40-s + 2.65·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 0.625·5-s − 1.20·7-s − 0.353·8-s + 0.442·10-s − 0.0975·11-s + 0.644·13-s + 0.851·14-s + 0.250·16-s − 0.417·17-s − 0.656·19-s − 0.312·20-s + 0.0689·22-s + 1.35·23-s − 0.609·25-s − 0.455·26-s − 0.601·28-s − 0.0119·29-s + 0.917·31-s − 0.176·32-s + 0.295·34-s + 0.752·35-s + 1.47·37-s + 0.464·38-s + 0.221·40-s + 0.414·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1098 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1098 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1098\)    =    \(2 \cdot 3^{2} \cdot 61\)
Sign: $1$
Analytic conductor: \(8.76757\)
Root analytic conductor: \(2.96100\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1098,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7803547764\)
\(L(\frac12)\) \(\approx\) \(0.7803547764\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
61 \( 1 + T \)
good5 \( 1 + 1.39T + 5T^{2} \)
7 \( 1 + 3.18T + 7T^{2} \)
11 \( 1 + 0.323T + 11T^{2} \)
13 \( 1 - 2.32T + 13T^{2} \)
17 \( 1 + 1.72T + 17T^{2} \)
19 \( 1 + 2.86T + 19T^{2} \)
23 \( 1 - 6.50T + 23T^{2} \)
29 \( 1 + 0.0643T + 29T^{2} \)
31 \( 1 - 5.10T + 31T^{2} \)
37 \( 1 - 8.98T + 37T^{2} \)
41 \( 1 - 2.65T + 41T^{2} \)
43 \( 1 - 11.4T + 43T^{2} \)
47 \( 1 - 4.79T + 47T^{2} \)
53 \( 1 + 12.9T + 53T^{2} \)
59 \( 1 - 6.60T + 59T^{2} \)
67 \( 1 + 4.69T + 67T^{2} \)
71 \( 1 + 3.41T + 71T^{2} \)
73 \( 1 - 13.9T + 73T^{2} \)
79 \( 1 - 4.19T + 79T^{2} \)
83 \( 1 - 16.1T + 83T^{2} \)
89 \( 1 + 2.51T + 89T^{2} \)
97 \( 1 + 6.18T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.651277935830380482623882154380, −9.150524933110662642054948910507, −8.248342970226689120037345636894, −7.46969977897348269598395783305, −6.55103099382117253862630666796, −5.96953127185242466684810529717, −4.48430178871476826379961281754, −3.47837216586679871804272213063, −2.50191690690808572462807579836, −0.73014257456017341271987376300, 0.73014257456017341271987376300, 2.50191690690808572462807579836, 3.47837216586679871804272213063, 4.48430178871476826379961281754, 5.96953127185242466684810529717, 6.55103099382117253862630666796, 7.46969977897348269598395783305, 8.248342970226689120037345636894, 9.150524933110662642054948910507, 9.651277935830380482623882154380

Graph of the $Z$-function along the critical line