L(s) = 1 | − 2-s + 4-s − 1.39·5-s − 3.18·7-s − 8-s + 1.39·10-s − 0.323·11-s + 2.32·13-s + 3.18·14-s + 16-s − 1.72·17-s − 2.86·19-s − 1.39·20-s + 0.323·22-s + 6.50·23-s − 3.04·25-s − 2.32·26-s − 3.18·28-s − 0.0643·29-s + 5.10·31-s − 32-s + 1.72·34-s + 4.45·35-s + 8.98·37-s + 2.86·38-s + 1.39·40-s + 2.65·41-s + ⋯ |
L(s) = 1 | − 0.707·2-s + 0.5·4-s − 0.625·5-s − 1.20·7-s − 0.353·8-s + 0.442·10-s − 0.0975·11-s + 0.644·13-s + 0.851·14-s + 0.250·16-s − 0.417·17-s − 0.656·19-s − 0.312·20-s + 0.0689·22-s + 1.35·23-s − 0.609·25-s − 0.455·26-s − 0.601·28-s − 0.0119·29-s + 0.917·31-s − 0.176·32-s + 0.295·34-s + 0.752·35-s + 1.47·37-s + 0.464·38-s + 0.221·40-s + 0.414·41-s + ⋯ |
Λ(s)=(=(1098s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1098s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.7803547764 |
L(21) |
≈ |
0.7803547764 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 3 | 1 |
| 61 | 1+T |
good | 5 | 1+1.39T+5T2 |
| 7 | 1+3.18T+7T2 |
| 11 | 1+0.323T+11T2 |
| 13 | 1−2.32T+13T2 |
| 17 | 1+1.72T+17T2 |
| 19 | 1+2.86T+19T2 |
| 23 | 1−6.50T+23T2 |
| 29 | 1+0.0643T+29T2 |
| 31 | 1−5.10T+31T2 |
| 37 | 1−8.98T+37T2 |
| 41 | 1−2.65T+41T2 |
| 43 | 1−11.4T+43T2 |
| 47 | 1−4.79T+47T2 |
| 53 | 1+12.9T+53T2 |
| 59 | 1−6.60T+59T2 |
| 67 | 1+4.69T+67T2 |
| 71 | 1+3.41T+71T2 |
| 73 | 1−13.9T+73T2 |
| 79 | 1−4.19T+79T2 |
| 83 | 1−16.1T+83T2 |
| 89 | 1+2.51T+89T2 |
| 97 | 1+6.18T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.651277935830380482623882154380, −9.150524933110662642054948910507, −8.248342970226689120037345636894, −7.46969977897348269598395783305, −6.55103099382117253862630666796, −5.96953127185242466684810529717, −4.48430178871476826379961281754, −3.47837216586679871804272213063, −2.50191690690808572462807579836, −0.73014257456017341271987376300,
0.73014257456017341271987376300, 2.50191690690808572462807579836, 3.47837216586679871804272213063, 4.48430178871476826379961281754, 5.96953127185242466684810529717, 6.55103099382117253862630666796, 7.46969977897348269598395783305, 8.248342970226689120037345636894, 9.150524933110662642054948910507, 9.651277935830380482623882154380