L(s) = 1 | + 2-s + 4-s − 5-s + 4·7-s + 8-s − 10-s + 6·11-s − 6·13-s + 4·14-s + 16-s + 3·17-s − 6·19-s − 20-s + 6·22-s + 7·23-s − 4·25-s − 6·26-s + 4·28-s + 6·31-s + 32-s + 3·34-s − 4·35-s − 3·37-s − 6·38-s − 40-s + 7·43-s + 6·44-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 1/2·4-s − 0.447·5-s + 1.51·7-s + 0.353·8-s − 0.316·10-s + 1.80·11-s − 1.66·13-s + 1.06·14-s + 1/4·16-s + 0.727·17-s − 1.37·19-s − 0.223·20-s + 1.27·22-s + 1.45·23-s − 4/5·25-s − 1.17·26-s + 0.755·28-s + 1.07·31-s + 0.176·32-s + 0.514·34-s − 0.676·35-s − 0.493·37-s − 0.973·38-s − 0.158·40-s + 1.06·43-s + 0.904·44-s + ⋯ |
Λ(s)=(=(1098s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1098s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.856351741 |
L(21) |
≈ |
2.856351741 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1 |
| 61 | 1+T |
good | 5 | 1+T+pT2 |
| 7 | 1−4T+pT2 |
| 11 | 1−6T+pT2 |
| 13 | 1+6T+pT2 |
| 17 | 1−3T+pT2 |
| 19 | 1+6T+pT2 |
| 23 | 1−7T+pT2 |
| 29 | 1+pT2 |
| 31 | 1−6T+pT2 |
| 37 | 1+3T+pT2 |
| 41 | 1+pT2 |
| 43 | 1−7T+pT2 |
| 47 | 1−6T+pT2 |
| 53 | 1+10T+pT2 |
| 59 | 1−6T+pT2 |
| 67 | 1−4T+pT2 |
| 71 | 1−7T+pT2 |
| 73 | 1−3T+pT2 |
| 79 | 1+2T+pT2 |
| 83 | 1+15T+pT2 |
| 89 | 1+9T+pT2 |
| 97 | 1+13T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.917461859219297653369521903530, −8.954461847508739444883118593331, −8.069357192077553612030161472406, −7.30055553795352770723922990587, −6.53709602046399974447217609868, −5.34558974721025801567566921767, −4.54876985837096746161070305611, −3.95885180382732927496948309529, −2.52097089588598704365976417676, −1.35091118273881221529817713534,
1.35091118273881221529817713534, 2.52097089588598704365976417676, 3.95885180382732927496948309529, 4.54876985837096746161070305611, 5.34558974721025801567566921767, 6.53709602046399974447217609868, 7.30055553795352770723922990587, 8.069357192077553612030161472406, 8.954461847508739444883118593331, 9.917461859219297653369521903530