L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.866 − 0.499i)4-s + (1.69 − 2.93i)5-s + (0.229 + 0.857i)7-s + (−0.707 + 0.707i)8-s + (−0.878 + 3.27i)10-s + (−4.13 + 4.13i)11-s + (−1.60 + 2.77i)13-s + (−0.443 − 0.768i)14-s + (0.500 − 0.866i)16-s + (−2.21 − 0.592i)17-s + (−6.05 + 3.49i)19-s − 3.39i·20-s + (2.92 − 5.07i)22-s + (−6.28 − 6.28i)23-s + ⋯ |
L(s) = 1 | + (−0.683 + 0.183i)2-s + (0.433 − 0.249i)4-s + (0.758 − 1.31i)5-s + (0.0868 + 0.324i)7-s + (−0.249 + 0.249i)8-s + (−0.277 + 1.03i)10-s + (−1.24 + 1.24i)11-s + (−0.444 + 0.769i)13-s + (−0.118 − 0.205i)14-s + (0.125 − 0.216i)16-s + (−0.536 − 0.143i)17-s + (−1.38 + 0.802i)19-s − 0.758i·20-s + (0.624 − 1.08i)22-s + (−1.31 − 1.31i)23-s + ⋯ |
Λ(s)=(=(1098s/2ΓC(s)L(s)(−0.772−0.634i)Λ(2−s)
Λ(s)=(=(1098s/2ΓC(s+1/2)L(s)(−0.772−0.634i)Λ(1−s)
Degree: |
2 |
Conductor: |
1098
= 2⋅32⋅61
|
Sign: |
−0.772−0.634i
|
Analytic conductor: |
8.76757 |
Root analytic conductor: |
2.96100 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1098(467,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1098, ( :1/2), −0.772−0.634i)
|
Particular Values
L(1) |
≈ |
0.3375387055 |
L(21) |
≈ |
0.3375387055 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.965−0.258i)T |
| 3 | 1 |
| 61 | 1+(6.52+4.29i)T |
good | 5 | 1+(−1.69+2.93i)T+(−2.5−4.33i)T2 |
| 7 | 1+(−0.229−0.857i)T+(−6.06+3.5i)T2 |
| 11 | 1+(4.13−4.13i)T−11iT2 |
| 13 | 1+(1.60−2.77i)T+(−6.5−11.2i)T2 |
| 17 | 1+(2.21+0.592i)T+(14.7+8.5i)T2 |
| 19 | 1+(6.05−3.49i)T+(9.5−16.4i)T2 |
| 23 | 1+(6.28+6.28i)T+23iT2 |
| 29 | 1+(−0.737−0.197i)T+(25.1+14.5i)T2 |
| 31 | 1+(2.79−10.4i)T+(−26.8−15.5i)T2 |
| 37 | 1+(−5.70−5.70i)T+37iT2 |
| 41 | 1−0.414T+41T2 |
| 43 | 1+(5.78−1.55i)T+(37.2−21.5i)T2 |
| 47 | 1+(−2.33+1.34i)T+(23.5−40.7i)T2 |
| 53 | 1+(−3.97−3.97i)T+53iT2 |
| 59 | 1+(1.53+5.72i)T+(−51.0+29.5i)T2 |
| 67 | 1+(−3.62+0.970i)T+(58.0−33.5i)T2 |
| 71 | 1+(2.13+0.572i)T+(61.4+35.5i)T2 |
| 73 | 1+(0.946+1.63i)T+(−36.5+63.2i)T2 |
| 79 | 1+(3.48+13.0i)T+(−68.4+39.5i)T2 |
| 83 | 1+(3.05+1.76i)T+(41.5+71.8i)T2 |
| 89 | 1+(10.7−10.7i)T−89iT2 |
| 97 | 1+(−12.7+7.38i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.15529475914979778310564087641, −9.263838767695691920064556254463, −8.583075348689479189098126587734, −7.994991718582389989133376868743, −6.85399981513952028159352934124, −6.02052749693479341308457769664, −4.96011050431043910696321574117, −4.47024308533655477428824363575, −2.33577935029037892934094221257, −1.75997687535072148324420741627,
0.16595184278699914971705789770, 2.23364463579423133668569622820, 2.77966845114271660128937068336, 3.98481231853472073459092071796, 5.67294036744016437223936651250, 6.09556982616745824605575995515, 7.23696883892103829508723781813, 7.82894965041484630300192075849, 8.716194553185643126069778687336, 9.816527386345704693438536221327