L(s) = 1 | + (−0.965 + 0.258i)2-s + (0.866 − 0.499i)4-s + (−0.0820 + 0.142i)5-s + (−0.594 − 2.22i)7-s + (−0.707 + 0.707i)8-s + (0.0424 − 0.158i)10-s + (−2.55 + 2.55i)11-s + (−0.513 + 0.888i)13-s + (1.14 + 1.99i)14-s + (0.500 − 0.866i)16-s + (2.00 + 0.535i)17-s + (3.04 − 1.75i)19-s + 0.164i·20-s + (1.80 − 3.12i)22-s + (1.10 + 1.10i)23-s + ⋯ |
L(s) = 1 | + (−0.683 + 0.183i)2-s + (0.433 − 0.249i)4-s + (−0.0367 + 0.0635i)5-s + (−0.224 − 0.839i)7-s + (−0.249 + 0.249i)8-s + (0.0134 − 0.0501i)10-s + (−0.769 + 0.769i)11-s + (−0.142 + 0.246i)13-s + (0.307 + 0.532i)14-s + (0.125 − 0.216i)16-s + (0.485 + 0.129i)17-s + (0.697 − 0.402i)19-s + 0.0367i·20-s + (0.384 − 0.666i)22-s + (0.230 + 0.230i)23-s + ⋯ |
Λ(s)=(=(1098s/2ΓC(s)L(s)(0.986+0.165i)Λ(2−s)
Λ(s)=(=(1098s/2ΓC(s+1/2)L(s)(0.986+0.165i)Λ(1−s)
Degree: |
2 |
Conductor: |
1098
= 2⋅32⋅61
|
Sign: |
0.986+0.165i
|
Analytic conductor: |
8.76757 |
Root analytic conductor: |
2.96100 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1098(467,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1098, ( :1/2), 0.986+0.165i)
|
Particular Values
L(1) |
≈ |
1.070863644 |
L(21) |
≈ |
1.070863644 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.965−0.258i)T |
| 3 | 1 |
| 61 | 1+(−7.79−0.469i)T |
good | 5 | 1+(0.0820−0.142i)T+(−2.5−4.33i)T2 |
| 7 | 1+(0.594+2.22i)T+(−6.06+3.5i)T2 |
| 11 | 1+(2.55−2.55i)T−11iT2 |
| 13 | 1+(0.513−0.888i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−2.00−0.535i)T+(14.7+8.5i)T2 |
| 19 | 1+(−3.04+1.75i)T+(9.5−16.4i)T2 |
| 23 | 1+(−1.10−1.10i)T+23iT2 |
| 29 | 1+(−9.16−2.45i)T+(25.1+14.5i)T2 |
| 31 | 1+(−2.47+9.22i)T+(−26.8−15.5i)T2 |
| 37 | 1+(4.12+4.12i)T+37iT2 |
| 41 | 1+8.62T+41T2 |
| 43 | 1+(−7.44+1.99i)T+(37.2−21.5i)T2 |
| 47 | 1+(−7.88+4.55i)T+(23.5−40.7i)T2 |
| 53 | 1+(1.12+1.12i)T+53iT2 |
| 59 | 1+(1.19+4.45i)T+(−51.0+29.5i)T2 |
| 67 | 1+(−4.98+1.33i)T+(58.0−33.5i)T2 |
| 71 | 1+(−3.33−0.893i)T+(61.4+35.5i)T2 |
| 73 | 1+(4.59+7.96i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−4.11−15.3i)T+(−68.4+39.5i)T2 |
| 83 | 1+(7.68+4.43i)T+(41.5+71.8i)T2 |
| 89 | 1+(3.82−3.82i)T−89iT2 |
| 97 | 1+(2.50−1.44i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.939281657788570714738679869211, −9.078644204456186211486184967480, −8.110653328505855733943873759906, −7.26994120419198203119415231818, −6.89994823079451597366672895161, −5.61599815479276285095369850671, −4.72081234050658647279876714523, −3.49889430437414575251587740230, −2.30066563645654147703124470657, −0.813348659036409677275626263172,
0.956498274801420065676567544051, 2.61434020251486783066623275892, 3.19868007699459553939871316434, 4.80732441185815898868704497663, 5.70640484241127817481067847492, 6.56304713866169459781763058774, 7.59762491210547666496325618456, 8.502184692101494203003470734001, 8.809920151234542546841188991422, 10.12779592997410067295454908522