L(s) = 1 | − 2.54·3-s − 2.87·7-s + 3.46·9-s + 4.99·11-s − 0.149·13-s + 6.23·17-s − 1.90·19-s + 7.32·21-s − 4.35·23-s − 1.19·27-s − 8.93·29-s − 8.99·31-s − 12.7·33-s + 2.56·37-s + 0.379·39-s + 7.99·41-s − 4.54·43-s − 9.68·47-s + 1.28·49-s − 15.8·51-s − 1.52·53-s + 4.85·57-s + 11.4·59-s − 3.55·61-s − 9.98·63-s − 4.08·67-s + 11.0·69-s + ⋯ |
L(s) = 1 | − 1.46·3-s − 1.08·7-s + 1.15·9-s + 1.50·11-s − 0.0414·13-s + 1.51·17-s − 0.437·19-s + 1.59·21-s − 0.908·23-s − 0.229·27-s − 1.65·29-s − 1.61·31-s − 2.21·33-s + 0.421·37-s + 0.0608·39-s + 1.24·41-s − 0.692·43-s − 1.41·47-s + 0.184·49-s − 2.21·51-s − 0.209·53-s + 0.642·57-s + 1.49·59-s − 0.455·61-s − 1.25·63-s − 0.498·67-s + 1.33·69-s + ⋯ |
Λ(s)=(=(1000s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(1000s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+2.54T+3T2 |
| 7 | 1+2.87T+7T2 |
| 11 | 1−4.99T+11T2 |
| 13 | 1+0.149T+13T2 |
| 17 | 1−6.23T+17T2 |
| 19 | 1+1.90T+19T2 |
| 23 | 1+4.35T+23T2 |
| 29 | 1+8.93T+29T2 |
| 31 | 1+8.99T+31T2 |
| 37 | 1−2.56T+37T2 |
| 41 | 1−7.99T+41T2 |
| 43 | 1+4.54T+43T2 |
| 47 | 1+9.68T+47T2 |
| 53 | 1+1.52T+53T2 |
| 59 | 1−11.4T+59T2 |
| 61 | 1+3.55T+61T2 |
| 67 | 1+4.08T+67T2 |
| 71 | 1+8.56T+71T2 |
| 73 | 1+15.2T+73T2 |
| 79 | 1+15.0T+79T2 |
| 83 | 1−8.96T+83T2 |
| 89 | 1+9.26T+89T2 |
| 97 | 1−3.66T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.725276904353479422998217414847, −9.006012014627825514812476116523, −7.60548128652200670080916526951, −6.77937199092904670089791612306, −6.01291076837440709499011047570, −5.56643650734157994508055313524, −4.21577703712064417281421256843, −3.40605365645506965289013402652, −1.49123960040188935965338824048, 0,
1.49123960040188935965338824048, 3.40605365645506965289013402652, 4.21577703712064417281421256843, 5.56643650734157994508055313524, 6.01291076837440709499011047570, 6.77937199092904670089791612306, 7.60548128652200670080916526951, 9.006012014627825514812476116523, 9.725276904353479422998217414847