L(s) = 1 | − 0.543·3-s − 2.11·7-s − 2.70·9-s − 4.99·11-s + 6.32·13-s + 3.75·17-s + 1.90·19-s + 1.14·21-s + 9.35·23-s + 3.09·27-s + 7.22·29-s + 0.994·31-s + 2.71·33-s − 6.37·37-s − 3.43·39-s + 4.18·41-s + 1.45·43-s + 2.78·47-s − 2.52·49-s − 2.04·51-s + 1.52·53-s − 1.03·57-s + 1.47·59-s + 8.79·61-s + 5.72·63-s − 12.0·67-s − 5.08·69-s + ⋯ |
L(s) = 1 | − 0.313·3-s − 0.799·7-s − 0.901·9-s − 1.50·11-s + 1.75·13-s + 0.911·17-s + 0.437·19-s + 0.250·21-s + 1.94·23-s + 0.596·27-s + 1.34·29-s + 0.178·31-s + 0.472·33-s − 1.04·37-s − 0.550·39-s + 0.653·41-s + 0.222·43-s + 0.406·47-s − 0.360·49-s − 0.285·51-s + 0.209·53-s − 0.137·57-s + 0.192·59-s + 1.12·61-s + 0.720·63-s − 1.47·67-s − 0.611·69-s + ⋯ |
Λ(s)=(=(1000s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1000s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.193092662 |
L(21) |
≈ |
1.193092662 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+0.543T+3T2 |
| 7 | 1+2.11T+7T2 |
| 11 | 1+4.99T+11T2 |
| 13 | 1−6.32T+13T2 |
| 17 | 1−3.75T+17T2 |
| 19 | 1−1.90T+19T2 |
| 23 | 1−9.35T+23T2 |
| 29 | 1−7.22T+29T2 |
| 31 | 1−0.994T+31T2 |
| 37 | 1+6.37T+37T2 |
| 41 | 1−4.18T+41T2 |
| 43 | 1−1.45T+43T2 |
| 47 | 1−2.78T+47T2 |
| 53 | 1−1.52T+53T2 |
| 59 | 1−1.47T+59T2 |
| 61 | 1−8.79T+61T2 |
| 67 | 1+12.0T+67T2 |
| 71 | 1+12.3T+71T2 |
| 73 | 1−9.09T+73T2 |
| 79 | 1+8.91T+79T2 |
| 83 | 1−12.1T+83T2 |
| 89 | 1−3.08T+89T2 |
| 97 | 1−10.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.19388816888478715002195662425, −9.001903722517744142311909790216, −8.438624430237509876577644486088, −7.46551736755786102655952818709, −6.42504344208708348142551815768, −5.69358268310058173865848038870, −4.95829748245161908284484670251, −3.38963219773857748805981466592, −2.83927531314506005597144705385, −0.867530540567614798367836764457,
0.867530540567614798367836764457, 2.83927531314506005597144705385, 3.38963219773857748805981466592, 4.95829748245161908284484670251, 5.69358268310058173865848038870, 6.42504344208708348142551815768, 7.46551736755786102655952818709, 8.438624430237509876577644486088, 9.001903722517744142311909790216, 10.19388816888478715002195662425