L(s) = 1 | − 3.01·3-s + 4.48·7-s + 6.10·9-s + 3.39·11-s − 6.49·13-s − 3.15·17-s − 1.11·19-s − 13.5·21-s + 4.98·23-s − 9.35·27-s + 0.354·29-s + 5.42·31-s − 10.2·33-s + 2.87·37-s + 19.6·39-s − 0.211·41-s − 0.847·43-s − 2.09·47-s + 13.0·49-s + 9.50·51-s + 9.06·53-s + 3.35·57-s + 3.46·59-s + 3.78·61-s + 27.3·63-s + 7.73·67-s − 15.0·69-s + ⋯ |
L(s) = 1 | − 1.74·3-s + 1.69·7-s + 2.03·9-s + 1.02·11-s − 1.80·13-s − 0.764·17-s − 0.254·19-s − 2.95·21-s + 1.04·23-s − 1.80·27-s + 0.0659·29-s + 0.974·31-s − 1.78·33-s + 0.471·37-s + 3.13·39-s − 0.0330·41-s − 0.129·43-s − 0.304·47-s + 1.87·49-s + 1.33·51-s + 1.24·53-s + 0.443·57-s + 0.451·59-s + 0.484·61-s + 3.44·63-s + 0.944·67-s − 1.81·69-s + ⋯ |
Λ(s)=(=(1000s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1000s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.037498710 |
L(21) |
≈ |
1.037498710 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
good | 3 | 1+3.01T+3T2 |
| 7 | 1−4.48T+7T2 |
| 11 | 1−3.39T+11T2 |
| 13 | 1+6.49T+13T2 |
| 17 | 1+3.15T+17T2 |
| 19 | 1+1.11T+19T2 |
| 23 | 1−4.98T+23T2 |
| 29 | 1−0.354T+29T2 |
| 31 | 1−5.42T+31T2 |
| 37 | 1−2.87T+37T2 |
| 41 | 1+0.211T+41T2 |
| 43 | 1+0.847T+43T2 |
| 47 | 1+2.09T+47T2 |
| 53 | 1−9.06T+53T2 |
| 59 | 1−3.46T+59T2 |
| 61 | 1−3.78T+61T2 |
| 67 | 1−7.73T+67T2 |
| 71 | 1−0.0503T+71T2 |
| 73 | 1−7.62T+73T2 |
| 79 | 1+8.60T+79T2 |
| 83 | 1−14.7T+83T2 |
| 89 | 1−9.84T+89T2 |
| 97 | 1+10.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.22967107112080789203615807022, −9.307109874779712146883368797713, −8.194045146264873147356519406427, −7.16769043865944030227925991733, −6.63483316616915228765245408933, −5.46021367744418967326168074788, −4.81687255541543521495691303559, −4.31096963388915290782774110453, −2.15096214265904922896510184099, −0.900366202041063146447159861662,
0.900366202041063146447159861662, 2.15096214265904922896510184099, 4.31096963388915290782774110453, 4.81687255541543521495691303559, 5.46021367744418967326168074788, 6.63483316616915228765245408933, 7.16769043865944030227925991733, 8.194045146264873147356519406427, 9.307109874779712146883368797713, 10.22967107112080789203615807022