L(s) = 1 | + (1.35 − 0.390i)2-s + (0.290 + 0.351i)3-s + (1.69 − 1.06i)4-s + (1.00 + 1.99i)5-s + (0.532 + 0.364i)6-s + (3.27 − 1.06i)7-s + (1.88 − 2.10i)8-s + (0.523 − 2.74i)9-s + (2.15 + 2.31i)10-s + (−0.505 + 4.00i)11-s + (0.866 + 0.287i)12-s + (−0.348 + 1.82i)13-s + (4.03 − 2.72i)14-s + (−0.407 + 0.935i)15-s + (1.74 − 3.59i)16-s + (−0.351 − 1.36i)17-s + ⋯ |
L(s) = 1 | + (0.961 − 0.276i)2-s + (0.167 + 0.203i)3-s + (0.847 − 0.530i)4-s + (0.451 + 0.892i)5-s + (0.217 + 0.148i)6-s + (1.23 − 0.402i)7-s + (0.667 − 0.744i)8-s + (0.174 − 0.914i)9-s + (0.680 + 0.732i)10-s + (−0.152 + 1.20i)11-s + (0.250 + 0.0828i)12-s + (−0.0967 + 0.507i)13-s + (1.07 − 0.729i)14-s + (−0.105 + 0.241i)15-s + (0.436 − 0.899i)16-s + (−0.0851 − 0.331i)17-s + ⋯ |
Λ(s)=(=(1000s/2ΓC(s)L(s)(0.994+0.104i)Λ(2−s)
Λ(s)=(=(1000s/2ΓC(s+1/2)L(s)(0.994+0.104i)Λ(1−s)
Degree: |
2 |
Conductor: |
1000
= 23⋅53
|
Sign: |
0.994+0.104i
|
Analytic conductor: |
7.98504 |
Root analytic conductor: |
2.82578 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1000(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1000, ( :1/2), 0.994+0.104i)
|
Particular Values
L(1) |
≈ |
3.69051−0.193365i |
L(21) |
≈ |
3.69051−0.193365i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.35+0.390i)T |
| 5 | 1+(−1.00−1.99i)T |
good | 3 | 1+(−0.290−0.351i)T+(−0.562+2.94i)T2 |
| 7 | 1+(−3.27+1.06i)T+(5.66−4.11i)T2 |
| 11 | 1+(0.505−4.00i)T+(−10.6−2.73i)T2 |
| 13 | 1+(0.348−1.82i)T+(−12.0−4.78i)T2 |
| 17 | 1+(0.351+1.36i)T+(−14.8+8.18i)T2 |
| 19 | 1+(4.46+3.69i)T+(3.56+18.6i)T2 |
| 23 | 1+(2.55−2.72i)T+(−1.44−22.9i)T2 |
| 29 | 1+(8.15−0.513i)T+(28.7−3.63i)T2 |
| 31 | 1+(−5.40+1.38i)T+(27.1−14.9i)T2 |
| 37 | 1+(−4.18−2.30i)T+(19.8+31.2i)T2 |
| 41 | 1+(2.71−2.55i)T+(2.57−40.9i)T2 |
| 43 | 1+(0.804−0.584i)T+(13.2−40.8i)T2 |
| 47 | 1+(2.83+7.16i)T+(−34.2+32.1i)T2 |
| 53 | 1+(0.588−0.928i)T+(−22.5−47.9i)T2 |
| 59 | 1+(−6.95+3.27i)T+(37.6−45.4i)T2 |
| 61 | 1+(−4.68+4.98i)T+(−3.83−60.8i)T2 |
| 67 | 1+(0.294−4.68i)T+(−66.4−8.39i)T2 |
| 71 | 1+(0.689−0.272i)T+(51.7−48.6i)T2 |
| 73 | 1+(−10.0−4.71i)T+(46.5+56.2i)T2 |
| 79 | 1+(−1.98−2.39i)T+(−14.8+77.6i)T2 |
| 83 | 1+(7.58−9.17i)T+(−15.5−81.5i)T2 |
| 89 | 1+(5.18−11.0i)T+(−56.7−68.5i)T2 |
| 97 | 1+(15.5−0.979i)T+(96.2−12.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.920636861673252069338650157312, −9.619138393458836664334774445512, −8.119007330585495876855219412901, −7.02386482116754883050892941261, −6.70975753130965358560655998595, −5.47155423003557253181456071091, −4.51260159855486815928478559736, −3.86219499188602296694269930052, −2.52113917617896729264078295140, −1.67987101090665534995700565782,
1.63337242325594792491838685166, 2.45875845395848842211350674411, 3.98731969900334229284631838116, 4.87227655334763947664478227999, 5.57539097919316991024421843568, 6.20742932451619485162669783281, 7.71007628723657194494630345624, 8.215190690050056385854052176729, 8.678386259077304992298819466113, 10.24495555548416155219588972766