L(s) = 1 | − 2-s + 4-s − 0.618·7-s − 8-s + 9-s − 1.61·11-s + 1.61·13-s + 0.618·14-s + 16-s − 18-s + 0.618·19-s + 1.61·22-s + 1.61·23-s − 1.61·26-s − 0.618·28-s − 32-s + 36-s − 0.618·37-s − 0.618·38-s + 0.618·41-s − 1.61·44-s − 1.61·46-s + 1.61·47-s − 0.618·49-s + 1.61·52-s − 0.618·53-s + 0.618·56-s + ⋯ |
L(s) = 1 | − 2-s + 4-s − 0.618·7-s − 8-s + 9-s − 1.61·11-s + 1.61·13-s + 0.618·14-s + 16-s − 18-s + 0.618·19-s + 1.61·22-s + 1.61·23-s − 1.61·26-s − 0.618·28-s − 32-s + 36-s − 0.618·37-s − 0.618·38-s + 0.618·41-s − 1.61·44-s − 1.61·46-s + 1.61·47-s − 0.618·49-s + 1.61·52-s − 0.618·53-s + 0.618·56-s + ⋯ |
Λ(s)=(=(1000s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(1000s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
1000
= 23⋅53
|
Sign: |
1
|
Analytic conductor: |
0.499065 |
Root analytic conductor: |
0.706445 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1000(499,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 1000, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.6767991991 |
L(21) |
≈ |
0.6767991991 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 5 | 1 |
good | 3 | 1−T2 |
| 7 | 1+0.618T+T2 |
| 11 | 1+1.61T+T2 |
| 13 | 1−1.61T+T2 |
| 17 | 1−T2 |
| 19 | 1−0.618T+T2 |
| 23 | 1−1.61T+T2 |
| 29 | 1−T2 |
| 31 | 1−T2 |
| 37 | 1+0.618T+T2 |
| 41 | 1−0.618T+T2 |
| 43 | 1−T2 |
| 47 | 1−1.61T+T2 |
| 53 | 1+0.618T+T2 |
| 59 | 1−0.618T+T2 |
| 61 | 1−T2 |
| 67 | 1−T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1−T2 |
| 83 | 1−T2 |
| 89 | 1+1.61T+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.21909375937087143863763296476, −9.336281646077878582184375078988, −8.606313541949706043374262076575, −7.68557501242738725718451301627, −7.03934487728620344713907360437, −6.12132479717912161917720685954, −5.15686831524762743437841247795, −3.62933963483017492191714838091, −2.67523889781754086218996491939, −1.18834119397106713934378917459,
1.18834119397106713934378917459, 2.67523889781754086218996491939, 3.62933963483017492191714838091, 5.15686831524762743437841247795, 6.12132479717912161917720685954, 7.03934487728620344713907360437, 7.68557501242738725718451301627, 8.606313541949706043374262076575, 9.336281646077878582184375078988, 10.21909375937087143863763296476