Properties

Label 2-11-11.10-c2-0-0
Degree $2$
Conductor $11$
Sign $1$
Analytic cond. $0.299728$
Root an. cond. $0.547474$
Motivic weight $2$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·3-s + 4·4-s − 5-s + 16·9-s − 11·11-s − 20·12-s + 5·15-s + 16·16-s − 4·20-s + 35·23-s − 24·25-s − 35·27-s − 37·31-s + 55·33-s + 64·36-s − 25·37-s − 44·44-s − 16·45-s + 50·47-s − 80·48-s + 49·49-s − 70·53-s + 11·55-s + 107·59-s + 20·60-s + 64·64-s + 35·67-s + ⋯
L(s)  = 1  − 5/3·3-s + 4-s − 1/5·5-s + 16/9·9-s − 11-s − 5/3·12-s + 1/3·15-s + 16-s − 1/5·20-s + 1.52·23-s − 0.959·25-s − 1.29·27-s − 1.19·31-s + 5/3·33-s + 16/9·36-s − 0.675·37-s − 44-s − 0.355·45-s + 1.06·47-s − 5/3·48-s + 49-s − 1.32·53-s + 1/5·55-s + 1.81·59-s + 1/3·60-s + 64-s + 0.522·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 11 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(11\)
Sign: $1$
Analytic conductor: \(0.299728\)
Root analytic conductor: \(0.547474\)
Motivic weight: \(2\)
Rational: yes
Arithmetic: yes
Character: $\chi_{11} (10, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 11,\ (\ :1),\ 1)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.5529457047\)
\(L(\frac12)\) \(\approx\) \(0.5529457047\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad11 \( 1 + p T \)
good2 \( ( 1 - p T )( 1 + p T ) \)
3 \( 1 + 5 T + p^{2} T^{2} \)
5 \( 1 + T + p^{2} T^{2} \)
7 \( ( 1 - p T )( 1 + p T ) \)
13 \( ( 1 - p T )( 1 + p T ) \)
17 \( ( 1 - p T )( 1 + p T ) \)
19 \( ( 1 - p T )( 1 + p T ) \)
23 \( 1 - 35 T + p^{2} T^{2} \)
29 \( ( 1 - p T )( 1 + p T ) \)
31 \( 1 + 37 T + p^{2} T^{2} \)
37 \( 1 + 25 T + p^{2} T^{2} \)
41 \( ( 1 - p T )( 1 + p T ) \)
43 \( ( 1 - p T )( 1 + p T ) \)
47 \( 1 - 50 T + p^{2} T^{2} \)
53 \( 1 + 70 T + p^{2} T^{2} \)
59 \( 1 - 107 T + p^{2} T^{2} \)
61 \( ( 1 - p T )( 1 + p T ) \)
67 \( 1 - 35 T + p^{2} T^{2} \)
71 \( 1 + 133 T + p^{2} T^{2} \)
73 \( ( 1 - p T )( 1 + p T ) \)
79 \( ( 1 - p T )( 1 + p T ) \)
83 \( ( 1 - p T )( 1 + p T ) \)
89 \( 1 + 97 T + p^{2} T^{2} \)
97 \( 1 - 95 T + p^{2} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−20.72706949828071681393765289837, −18.94937433851464141337121078848, −17.50931498854494012695157990131, −16.39332234475921287320684070443, −15.41095432208513402598326186997, −12.72041557714426109759504904958, −11.45633132707164803753858409043, −10.50725023499595595838468875295, −7.18564016333659252457943769445, −5.54693185652010333576723147591, 5.54693185652010333576723147591, 7.18564016333659252457943769445, 10.50725023499595595838468875295, 11.45633132707164803753858409043, 12.72041557714426109759504904958, 15.41095432208513402598326186997, 16.39332234475921287320684070443, 17.50931498854494012695157990131, 18.94937433851464141337121078848, 20.72706949828071681393765289837

Graph of the $Z$-function along the critical line