L(s) = 1 | − 8.59e7·3-s + 4.29e9·4-s − 9.72e9·5-s + 5.53e15·9-s + 4.59e16·11-s − 3.69e17·12-s + 8.36e17·15-s + 1.84e19·16-s − 4.17e19·20-s + 3.65e21·23-s − 2.31e22·25-s − 3.16e23·27-s − 1.00e24·31-s − 3.95e24·33-s + 2.37e25·36-s + 1.77e25·37-s + 1.97e26·44-s − 5.38e25·45-s − 1.02e27·47-s − 1.58e27·48-s + 1.10e27·49-s + 4.02e27·53-s − 4.47e26·55-s + 3.35e28·59-s + 3.59e27·60-s + 7.92e28·64-s − 1.53e29·67-s + ⋯ |
L(s) = 1 | − 1.99·3-s + 4-s − 0.0637·5-s + 2.98·9-s + 11-s − 1.99·12-s + 0.127·15-s + 16-s − 0.0637·20-s + 0.596·23-s − 0.995·25-s − 3.97·27-s − 1.38·31-s − 1.99·33-s + 2.98·36-s + 1.43·37-s + 44-s − 0.190·45-s − 1.80·47-s − 1.99·48-s + 49-s + 1.03·53-s − 0.0637·55-s + 1.55·59-s + 0.127·60-s + 64-s − 0.931·67-s + ⋯ |
Λ(s)=(=(11s/2ΓC(s)L(s)Λ(33−s)
Λ(s)=(=(11s/2ΓC(s+16)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
11
|
Sign: |
1
|
Analytic conductor: |
71.3533 |
Root analytic conductor: |
8.44708 |
Motivic weight: |
32 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ11(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 11, ( :16), 1)
|
Particular Values
L(233) |
≈ |
1.464993945 |
L(21) |
≈ |
1.464993945 |
L(17) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1−p16T |
good | 2 | (1−p16T)(1+p16T) |
| 3 | 1+85968833T+p32T2 |
| 5 | 1+9728091649T+p32T2 |
| 7 | (1−p16T)(1+p16T) |
| 13 | (1−p16T)(1+p16T) |
| 17 | (1−p16T)(1+p16T) |
| 19 | (1−p16T)(1+p16T) |
| 23 | 1−36⋯47T+p32T2 |
| 29 | (1−p16T)(1+p16T) |
| 31 | 1+10⋯13T+p32T2 |
| 37 | 1−17⋯07T+p32T2 |
| 41 | (1−p16T)(1+p16T) |
| 43 | (1−p16T)(1+p16T) |
| 47 | 1+10⋯58T+p32T2 |
| 53 | 1−40⋯42T+p32T2 |
| 59 | 1−33⋯07T+p32T2 |
| 61 | (1−p16T)(1+p16T) |
| 67 | 1+15⋯13T+p32T2 |
| 71 | 1−70⋯67T+p32T2 |
| 73 | (1−p16T)(1+p16T) |
| 79 | (1−p16T)(1+p16T) |
| 83 | (1−p16T)(1+p16T) |
| 89 | 1+30⋯53T+p32T2 |
| 97 | 1+40⋯33T+p32T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.79681991640641744096439676747, −11.69815852947917030429194207633, −11.12793170999355942816611734265, −9.862825479993612420324049217911, −7.31160544412265240312694550235, −6.40906376990926192762832537484, −5.46735563983969898430666425266, −3.96812195673020274630076984686, −1.75624228896501795476104167445, −0.72381146104502178281250642626,
0.72381146104502178281250642626, 1.75624228896501795476104167445, 3.96812195673020274630076984686, 5.46735563983969898430666425266, 6.40906376990926192762832537484, 7.31160544412265240312694550235, 9.862825479993612420324049217911, 11.12793170999355942816611734265, 11.69815852947917030429194207633, 12.79681991640641744096439676747