L(s) = 1 | + 7·3-s + 16·4-s − 49·5-s − 32·9-s + 121·11-s + 112·12-s − 343·15-s + 256·16-s − 784·20-s + 167·23-s + 1.77e3·25-s − 791·27-s − 553·31-s + 847·33-s − 512·36-s − 2.11e3·37-s + 1.93e3·44-s + 1.56e3·45-s − 1.91e3·47-s + 1.79e3·48-s + 2.40e3·49-s − 718·53-s − 5.92e3·55-s + 4.48e3·59-s − 5.48e3·60-s + 4.09e3·64-s − 7.75e3·67-s + ⋯ |
L(s) = 1 | + 7/9·3-s + 4-s − 1.95·5-s − 0.395·9-s + 11-s + 7/9·12-s − 1.52·15-s + 16-s − 1.95·20-s + 0.315·23-s + 2.84·25-s − 1.08·27-s − 0.575·31-s + 7/9·33-s − 0.395·36-s − 1.54·37-s + 44-s + 0.774·45-s − 0.868·47-s + 7/9·48-s + 49-s − 0.255·53-s − 1.95·55-s + 1.28·59-s − 1.52·60-s + 64-s − 1.72·67-s + ⋯ |
Λ(s)=(=(11s/2ΓC(s)L(s)Λ(5−s)
Λ(s)=(=(11s/2ΓC(s+2)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
11
|
Sign: |
1
|
Analytic conductor: |
1.13706 |
Root analytic conductor: |
1.06633 |
Motivic weight: |
4 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ11(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 11, ( :2), 1)
|
Particular Values
L(25) |
≈ |
1.206681487 |
L(21) |
≈ |
1.206681487 |
L(3) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 11 | 1−p2T |
good | 2 | (1−p2T)(1+p2T) |
| 3 | 1−7T+p4T2 |
| 5 | 1+49T+p4T2 |
| 7 | (1−p2T)(1+p2T) |
| 13 | (1−p2T)(1+p2T) |
| 17 | (1−p2T)(1+p2T) |
| 19 | (1−p2T)(1+p2T) |
| 23 | 1−167T+p4T2 |
| 29 | (1−p2T)(1+p2T) |
| 31 | 1+553T+p4T2 |
| 37 | 1+2113T+p4T2 |
| 41 | (1−p2T)(1+p2T) |
| 43 | (1−p2T)(1+p2T) |
| 47 | 1+1918T+p4T2 |
| 53 | 1+718T+p4T2 |
| 59 | 1−4487T+p4T2 |
| 61 | (1−p2T)(1+p2T) |
| 67 | 1+7753T+p4T2 |
| 71 | 1−7607T+p4T2 |
| 73 | (1−p2T)(1+p2T) |
| 79 | (1−p2T)(1+p2T) |
| 83 | (1−p2T)(1+p2T) |
| 89 | 1+6433T+p4T2 |
| 97 | 1+9793T+p4T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−19.75885494398119872252381855677, −19.21831500864514360034759155597, −16.68606130447771987237201821798, −15.47741591826257693856979377606, −14.58729990820295578316234063201, −12.14791799560031264064261886161, −11.18632149482410471750487909209, −8.524438658210435446274777614942, −7.18620362855703168198936251634, −3.49864671127385759292183735940,
3.49864671127385759292183735940, 7.18620362855703168198936251634, 8.524438658210435446274777614942, 11.18632149482410471750487909209, 12.14791799560031264064261886161, 14.58729990820295578316234063201, 15.47741591826257693856979377606, 16.68606130447771987237201821798, 19.21831500864514360034759155597, 19.75885494398119872252381855677