Properties

Label 2-110-1.1-c1-0-2
Degree $2$
Conductor $110$
Sign $1$
Analytic cond. $0.878354$
Root an. cond. $0.937205$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2.37·3-s + 4-s + 5-s − 2.37·6-s − 2.37·7-s − 8-s + 2.62·9-s − 10-s − 11-s + 2.37·12-s + 2·13-s + 2.37·14-s + 2.37·15-s + 16-s − 4.37·17-s − 2.62·18-s + 6.37·19-s + 20-s − 5.62·21-s + 22-s − 8.74·23-s − 2.37·24-s + 25-s − 2·26-s − 0.883·27-s − 2.37·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.36·3-s + 0.5·4-s + 0.447·5-s − 0.968·6-s − 0.896·7-s − 0.353·8-s + 0.875·9-s − 0.316·10-s − 0.301·11-s + 0.684·12-s + 0.554·13-s + 0.634·14-s + 0.612·15-s + 0.250·16-s − 1.06·17-s − 0.619·18-s + 1.46·19-s + 0.223·20-s − 1.22·21-s + 0.213·22-s − 1.82·23-s − 0.484·24-s + 0.200·25-s − 0.392·26-s − 0.169·27-s − 0.448·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(110\)    =    \(2 \cdot 5 \cdot 11\)
Sign: $1$
Analytic conductor: \(0.878354\)
Root analytic conductor: \(0.937205\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 110,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.092978502\)
\(L(\frac12)\) \(\approx\) \(1.092978502\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
5 \( 1 - T \)
11 \( 1 + T \)
good3 \( 1 - 2.37T + 3T^{2} \)
7 \( 1 + 2.37T + 7T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 + 4.37T + 17T^{2} \)
19 \( 1 - 6.37T + 19T^{2} \)
23 \( 1 + 8.74T + 23T^{2} \)
29 \( 1 + 4.37T + 29T^{2} \)
31 \( 1 + 2.37T + 31T^{2} \)
37 \( 1 - 3.62T + 37T^{2} \)
41 \( 1 - 11.4T + 41T^{2} \)
43 \( 1 + 4T + 43T^{2} \)
47 \( 1 + 8.74T + 47T^{2} \)
53 \( 1 - 13.1T + 53T^{2} \)
59 \( 1 - 8.74T + 59T^{2} \)
61 \( 1 - 0.372T + 61T^{2} \)
67 \( 1 - 8T + 67T^{2} \)
71 \( 1 + 7.11T + 71T^{2} \)
73 \( 1 - 7.48T + 73T^{2} \)
79 \( 1 + 12.7T + 79T^{2} \)
83 \( 1 - 8.74T + 83T^{2} \)
89 \( 1 - 4.37T + 89T^{2} \)
97 \( 1 + 1.25T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.65791280221585508799586150832, −12.95801060937520669818156462953, −11.42377555288379445698982492618, −9.979494288438638459727049279184, −9.390247785900182046123628465206, −8.415837047933552989842722452006, −7.35422687001489073777346203906, −5.98353161137008289164431147583, −3.61519141027645554829414607861, −2.28619853611828694232914044186, 2.28619853611828694232914044186, 3.61519141027645554829414607861, 5.98353161137008289164431147583, 7.35422687001489073777346203906, 8.415837047933552989842722452006, 9.390247785900182046123628465206, 9.979494288438638459727049279184, 11.42377555288379445698982492618, 12.95801060937520669818156462953, 13.65791280221585508799586150832

Graph of the $Z$-function along the critical line