L(s) = 1 | + 2-s + 3-s + 4-s − 5-s + 6-s − 7-s + 8-s − 2·9-s − 10-s − 11-s + 12-s + 2·13-s − 14-s − 15-s + 16-s − 3·17-s − 2·18-s − 19-s − 20-s − 21-s − 22-s + 6·23-s + 24-s + 25-s + 2·26-s − 5·27-s − 28-s + ⋯ |
L(s) = 1 | + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.377·7-s + 0.353·8-s − 2/3·9-s − 0.316·10-s − 0.301·11-s + 0.288·12-s + 0.554·13-s − 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.727·17-s − 0.471·18-s − 0.229·19-s − 0.223·20-s − 0.218·21-s − 0.213·22-s + 1.25·23-s + 0.204·24-s + 1/5·25-s + 0.392·26-s − 0.962·27-s − 0.188·28-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(110s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.540747344 |
L(21) |
≈ |
1.540747344 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 5 | 1+T |
| 11 | 1+T |
good | 3 | 1−T+pT2 |
| 7 | 1+T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1+3T+pT2 |
| 19 | 1+T+pT2 |
| 23 | 1−6T+pT2 |
| 29 | 1+9T+pT2 |
| 31 | 1−5T+pT2 |
| 37 | 1−5T+pT2 |
| 41 | 1+6T+pT2 |
| 43 | 1−8T+pT2 |
| 47 | 1−6T+pT2 |
| 53 | 1−9T+pT2 |
| 59 | 1−6T+pT2 |
| 61 | 1−5T+pT2 |
| 67 | 1−8T+pT2 |
| 71 | 1+9T+pT2 |
| 73 | 1+10T+pT2 |
| 79 | 1−14T+pT2 |
| 83 | 1+6T+pT2 |
| 89 | 1+15T+pT2 |
| 97 | 1−8T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.54712946528400016991259874830, −12.94269427172040951553295571447, −11.61430649233435892606346187577, −10.81523504438992298376035875160, −9.240245216843454718321617703983, −8.197325772660852886000765577503, −6.92339690043320565435471363407, −5.57585253794403166430858921429, −3.99189905466957435614609953053, −2.72390738347756879244011461463,
2.72390738347756879244011461463, 3.99189905466957435614609953053, 5.57585253794403166430858921429, 6.92339690043320565435471363407, 8.197325772660852886000765577503, 9.240245216843454718321617703983, 10.81523504438992298376035875160, 11.61430649233435892606346187577, 12.94269427172040951553295571447, 13.54712946528400016991259874830