L(s) = 1 | + (−1.61 + 1.17i)2-s + (−0.678 − 2.08i)3-s + (1.23 − 3.80i)4-s + (−4.04 − 2.93i)5-s + (3.55 + 2.57i)6-s + (−10.1 + 31.2i)7-s + (2.47 + 7.60i)8-s + (17.9 − 13.0i)9-s + 10·10-s + (22.4 − 28.7i)11-s − 8.77·12-s + (52.1 − 37.9i)13-s + (−20.2 − 62.4i)14-s + (−3.39 + 10.4i)15-s + (−12.9 − 9.40i)16-s + (77.1 + 56.0i)17-s + ⋯ |
L(s) = 1 | + (−0.572 + 0.415i)2-s + (−0.130 − 0.401i)3-s + (0.154 − 0.475i)4-s + (−0.361 − 0.262i)5-s + (0.241 + 0.175i)6-s + (−0.548 + 1.68i)7-s + (0.109 + 0.336i)8-s + (0.664 − 0.482i)9-s + 0.316·10-s + (0.614 − 0.789i)11-s − 0.211·12-s + (1.11 − 0.808i)13-s + (−0.387 − 1.19i)14-s + (−0.0583 + 0.179i)15-s + (−0.202 − 0.146i)16-s + (1.10 + 0.799i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.967 - 0.254i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.967 - 0.254i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.14394 + 0.147990i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.14394 + 0.147990i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.61 - 1.17i)T \) |
| 5 | \( 1 + (4.04 + 2.93i)T \) |
| 11 | \( 1 + (-22.4 + 28.7i)T \) |
good | 3 | \( 1 + (0.678 + 2.08i)T + (-21.8 + 15.8i)T^{2} \) |
| 7 | \( 1 + (10.1 - 31.2i)T + (-277. - 201. i)T^{2} \) |
| 13 | \( 1 + (-52.1 + 37.9i)T + (678. - 2.08e3i)T^{2} \) |
| 17 | \( 1 + (-77.1 - 56.0i)T + (1.51e3 + 4.67e3i)T^{2} \) |
| 19 | \( 1 + (-21.2 - 65.5i)T + (-5.54e3 + 4.03e3i)T^{2} \) |
| 23 | \( 1 - 112.T + 1.21e4T^{2} \) |
| 29 | \( 1 + (-18.1 + 55.9i)T + (-1.97e4 - 1.43e4i)T^{2} \) |
| 31 | \( 1 + (6.31 - 4.58i)T + (9.20e3 - 2.83e4i)T^{2} \) |
| 37 | \( 1 + (-34.2 + 105. i)T + (-4.09e4 - 2.97e4i)T^{2} \) |
| 41 | \( 1 + (-42.2 - 130. i)T + (-5.57e4 + 4.05e4i)T^{2} \) |
| 43 | \( 1 + 23.7T + 7.95e4T^{2} \) |
| 47 | \( 1 + (-167. - 516. i)T + (-8.39e4 + 6.10e4i)T^{2} \) |
| 53 | \( 1 + (38.8 - 28.2i)T + (4.60e4 - 1.41e5i)T^{2} \) |
| 59 | \( 1 + (-272. + 838. i)T + (-1.66e5 - 1.20e5i)T^{2} \) |
| 61 | \( 1 + (339. + 246. i)T + (7.01e4 + 2.15e5i)T^{2} \) |
| 67 | \( 1 + 726.T + 3.00e5T^{2} \) |
| 71 | \( 1 + (-921. - 669. i)T + (1.10e5 + 3.40e5i)T^{2} \) |
| 73 | \( 1 + (41.9 - 129. i)T + (-3.14e5 - 2.28e5i)T^{2} \) |
| 79 | \( 1 + (333. - 242. i)T + (1.52e5 - 4.68e5i)T^{2} \) |
| 83 | \( 1 + (110. + 80.0i)T + (1.76e5 + 5.43e5i)T^{2} \) |
| 89 | \( 1 + 492.T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-997. + 724. i)T + (2.82e5 - 8.68e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.91893991173974483541195756400, −12.29753368525829730120115584158, −11.19668386422021428371443663918, −9.735741645913600794333095673565, −8.782516299042087027574010116644, −7.930249942623643887564334350281, −6.30124994075559795456040057725, −5.70283208974898972650823755862, −3.39828311370164772762037430070, −1.15582733606615493691160718329,
1.10419481947305048895514805951, 3.52294502204010396492092696932, 4.50614143513939556355980674303, 6.92303447521141865557182081931, 7.39261507406241713899196303270, 9.133533383915780969319828956146, 10.10509277792402678731081168656, 10.80608739340610524252432969907, 11.80993739387766166673700938474, 13.18747695674494460112669370024