L(s) = 1 | + (−1.61 + 1.17i)2-s + (−0.678 − 2.08i)3-s + (1.23 − 3.80i)4-s + (−4.04 − 2.93i)5-s + (3.55 + 2.57i)6-s + (−10.1 + 31.2i)7-s + (2.47 + 7.60i)8-s + (17.9 − 13.0i)9-s + 10·10-s + (22.4 − 28.7i)11-s − 8.77·12-s + (52.1 − 37.9i)13-s + (−20.2 − 62.4i)14-s + (−3.39 + 10.4i)15-s + (−12.9 − 9.40i)16-s + (77.1 + 56.0i)17-s + ⋯ |
L(s) = 1 | + (−0.572 + 0.415i)2-s + (−0.130 − 0.401i)3-s + (0.154 − 0.475i)4-s + (−0.361 − 0.262i)5-s + (0.241 + 0.175i)6-s + (−0.548 + 1.68i)7-s + (0.109 + 0.336i)8-s + (0.664 − 0.482i)9-s + 0.316·10-s + (0.614 − 0.789i)11-s − 0.211·12-s + (1.11 − 0.808i)13-s + (−0.387 − 1.19i)14-s + (−0.0583 + 0.179i)15-s + (−0.202 − 0.146i)16-s + (1.10 + 0.799i)17-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)(0.967−0.254i)Λ(4−s)
Λ(s)=(=(110s/2ΓC(s+3/2)L(s)(0.967−0.254i)Λ(1−s)
Degree: |
2 |
Conductor: |
110
= 2⋅5⋅11
|
Sign: |
0.967−0.254i
|
Analytic conductor: |
6.49021 |
Root analytic conductor: |
2.54758 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ110(91,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 110, ( :3/2), 0.967−0.254i)
|
Particular Values
L(2) |
≈ |
1.14394+0.147990i |
L(21) |
≈ |
1.14394+0.147990i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.61−1.17i)T |
| 5 | 1+(4.04+2.93i)T |
| 11 | 1+(−22.4+28.7i)T |
good | 3 | 1+(0.678+2.08i)T+(−21.8+15.8i)T2 |
| 7 | 1+(10.1−31.2i)T+(−277.−201.i)T2 |
| 13 | 1+(−52.1+37.9i)T+(678.−2.08e3i)T2 |
| 17 | 1+(−77.1−56.0i)T+(1.51e3+4.67e3i)T2 |
| 19 | 1+(−21.2−65.5i)T+(−5.54e3+4.03e3i)T2 |
| 23 | 1−112.T+1.21e4T2 |
| 29 | 1+(−18.1+55.9i)T+(−1.97e4−1.43e4i)T2 |
| 31 | 1+(6.31−4.58i)T+(9.20e3−2.83e4i)T2 |
| 37 | 1+(−34.2+105.i)T+(−4.09e4−2.97e4i)T2 |
| 41 | 1+(−42.2−130.i)T+(−5.57e4+4.05e4i)T2 |
| 43 | 1+23.7T+7.95e4T2 |
| 47 | 1+(−167.−516.i)T+(−8.39e4+6.10e4i)T2 |
| 53 | 1+(38.8−28.2i)T+(4.60e4−1.41e5i)T2 |
| 59 | 1+(−272.+838.i)T+(−1.66e5−1.20e5i)T2 |
| 61 | 1+(339.+246.i)T+(7.01e4+2.15e5i)T2 |
| 67 | 1+726.T+3.00e5T2 |
| 71 | 1+(−921.−669.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(41.9−129.i)T+(−3.14e5−2.28e5i)T2 |
| 79 | 1+(333.−242.i)T+(1.52e5−4.68e5i)T2 |
| 83 | 1+(110.+80.0i)T+(1.76e5+5.43e5i)T2 |
| 89 | 1+492.T+7.04e5T2 |
| 97 | 1+(−997.+724.i)T+(2.82e5−8.68e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.91893991173974483541195756400, −12.29753368525829730120115584158, −11.19668386422021428371443663918, −9.735741645913600794333095673565, −8.782516299042087027574010116644, −7.930249942623643887564334350281, −6.30124994075559795456040057725, −5.70283208974898972650823755862, −3.39828311370164772762037430070, −1.15582733606615493691160718329,
1.10419481947305048895514805951, 3.52294502204010396492092696932, 4.50614143513939556355980674303, 6.92303447521141865557182081931, 7.39261507406241713899196303270, 9.133533383915780969319828956146, 10.10509277792402678731081168656, 10.80608739340610524252432969907, 11.80993739387766166673700938474, 13.18747695674494460112669370024