L(s) = 1 | + (−1.61 + 1.17i)2-s + (−1.38 − 4.24i)3-s + (1.23 − 3.80i)4-s + (4.04 + 2.93i)5-s + (7.22 + 5.25i)6-s + (−0.607 + 1.86i)7-s + (2.47 + 7.60i)8-s + (5.69 − 4.13i)9-s − 10·10-s + (−16.0 − 32.7i)11-s − 17.8·12-s + (−10.8 + 7.88i)13-s + (−1.21 − 3.73i)14-s + (6.90 − 21.2i)15-s + (−12.9 − 9.40i)16-s + (−93.2 − 67.7i)17-s + ⋯ |
L(s) = 1 | + (−0.572 + 0.415i)2-s + (−0.265 − 0.817i)3-s + (0.154 − 0.475i)4-s + (0.361 + 0.262i)5-s + (0.491 + 0.357i)6-s + (−0.0327 + 0.100i)7-s + (0.109 + 0.336i)8-s + (0.210 − 0.153i)9-s − 0.316·10-s + (−0.441 − 0.897i)11-s − 0.429·12-s + (−0.231 + 0.168i)13-s + (−0.0231 − 0.0713i)14-s + (0.118 − 0.365i)15-s + (−0.202 − 0.146i)16-s + (−1.33 − 0.966i)17-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)(−0.193+0.981i)Λ(4−s)
Λ(s)=(=(110s/2ΓC(s+3/2)L(s)(−0.193+0.981i)Λ(1−s)
Degree: |
2 |
Conductor: |
110
= 2⋅5⋅11
|
Sign: |
−0.193+0.981i
|
Analytic conductor: |
6.49021 |
Root analytic conductor: |
2.54758 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ110(91,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 110, ( :3/2), −0.193+0.981i)
|
Particular Values
L(2) |
≈ |
0.549458−0.668743i |
L(21) |
≈ |
0.549458−0.668743i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.61−1.17i)T |
| 5 | 1+(−4.04−2.93i)T |
| 11 | 1+(16.0+32.7i)T |
good | 3 | 1+(1.38+4.24i)T+(−21.8+15.8i)T2 |
| 7 | 1+(0.607−1.86i)T+(−277.−201.i)T2 |
| 13 | 1+(10.8−7.88i)T+(678.−2.08e3i)T2 |
| 17 | 1+(93.2+67.7i)T+(1.51e3+4.67e3i)T2 |
| 19 | 1+(44.0+135.i)T+(−5.54e3+4.03e3i)T2 |
| 23 | 1−158.T+1.21e4T2 |
| 29 | 1+(−39.9+122.i)T+(−1.97e4−1.43e4i)T2 |
| 31 | 1+(−11.0+7.99i)T+(9.20e3−2.83e4i)T2 |
| 37 | 1+(118.−365.i)T+(−4.09e4−2.97e4i)T2 |
| 41 | 1+(55.9+172.i)T+(−5.57e4+4.05e4i)T2 |
| 43 | 1+199.T+7.95e4T2 |
| 47 | 1+(30.9+95.2i)T+(−8.39e4+6.10e4i)T2 |
| 53 | 1+(130.−94.4i)T+(4.60e4−1.41e5i)T2 |
| 59 | 1+(−144.+444.i)T+(−1.66e5−1.20e5i)T2 |
| 61 | 1+(−579.−420.i)T+(7.01e4+2.15e5i)T2 |
| 67 | 1−844.T+3.00e5T2 |
| 71 | 1+(−168.−122.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(51.0−157.i)T+(−3.14e5−2.28e5i)T2 |
| 79 | 1+(−933.+678.i)T+(1.52e5−4.68e5i)T2 |
| 83 | 1+(233.+169.i)T+(1.76e5+5.43e5i)T2 |
| 89 | 1−181.T+7.04e5T2 |
| 97 | 1+(−371.+269.i)T+(2.82e5−8.68e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.20454430512003904572062796918, −11.66343838159726760163804691365, −10.85513533215892925725897759744, −9.480332307336773305930941961711, −8.511943109108459532313536483283, −7.02864715151737907019530649746, −6.54712741548742782712809445395, −5.01490472347821962335836297132, −2.50533952858152833386837121662, −0.57986836463863395141316239489,
1.93452712643048490458752034847, 3.97674985518514192265760764559, 5.18979198249897867848906790337, 6.89348819102457583481031484948, 8.298563470958815006595567557311, 9.450216862940904127594602840275, 10.35703366038101939533635151140, 10.92386948301547131530902114606, 12.49281956019886379658156678095, 13.09329742092234896384964761634