L(s) = 1 | + (1.61 − 1.17i)2-s + (0.168 + 0.519i)3-s + (1.23 − 3.80i)4-s + (−4.04 − 2.93i)5-s + (0.884 + 0.642i)6-s + (3.58 − 11.0i)7-s + (−2.47 − 7.60i)8-s + (21.6 − 15.6i)9-s − 10·10-s + (−21.7 − 29.2i)11-s + 2.18·12-s + (29.3 − 21.2i)13-s + (−7.17 − 22.0i)14-s + (0.844 − 2.59i)15-s + (−12.9 − 9.40i)16-s + (−19.2 − 13.9i)17-s + ⋯ |
L(s) = 1 | + (0.572 − 0.415i)2-s + (0.0324 + 0.100i)3-s + (0.154 − 0.475i)4-s + (−0.361 − 0.262i)5-s + (0.0601 + 0.0437i)6-s + (0.193 − 0.596i)7-s + (−0.109 − 0.336i)8-s + (0.800 − 0.581i)9-s − 0.316·10-s + (−0.597 − 0.802i)11-s + 0.0525·12-s + (0.625 − 0.454i)13-s + (−0.136 − 0.421i)14-s + (0.0145 − 0.0447i)15-s + (−0.202 − 0.146i)16-s + (−0.274 − 0.199i)17-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)(−0.0120+0.999i)Λ(4−s)
Λ(s)=(=(110s/2ΓC(s+3/2)L(s)(−0.0120+0.999i)Λ(1−s)
Degree: |
2 |
Conductor: |
110
= 2⋅5⋅11
|
Sign: |
−0.0120+0.999i
|
Analytic conductor: |
6.49021 |
Root analytic conductor: |
2.54758 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ110(91,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 110, ( :3/2), −0.0120+0.999i)
|
Particular Values
L(2) |
≈ |
1.43994−1.45739i |
L(21) |
≈ |
1.43994−1.45739i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.61+1.17i)T |
| 5 | 1+(4.04+2.93i)T |
| 11 | 1+(21.7+29.2i)T |
good | 3 | 1+(−0.168−0.519i)T+(−21.8+15.8i)T2 |
| 7 | 1+(−3.58+11.0i)T+(−277.−201.i)T2 |
| 13 | 1+(−29.3+21.2i)T+(678.−2.08e3i)T2 |
| 17 | 1+(19.2+13.9i)T+(1.51e3+4.67e3i)T2 |
| 19 | 1+(−20.4−63.0i)T+(−5.54e3+4.03e3i)T2 |
| 23 | 1−23.2T+1.21e4T2 |
| 29 | 1+(16.4−50.5i)T+(−1.97e4−1.43e4i)T2 |
| 31 | 1+(−32.3+23.5i)T+(9.20e3−2.83e4i)T2 |
| 37 | 1+(72.7−223.i)T+(−4.09e4−2.97e4i)T2 |
| 41 | 1+(−58.7−180.i)T+(−5.57e4+4.05e4i)T2 |
| 43 | 1−113.T+7.95e4T2 |
| 47 | 1+(−22.5−69.4i)T+(−8.39e4+6.10e4i)T2 |
| 53 | 1+(−397.+288.i)T+(4.60e4−1.41e5i)T2 |
| 59 | 1+(187.−575.i)T+(−1.66e5−1.20e5i)T2 |
| 61 | 1+(−584.−424.i)T+(7.01e4+2.15e5i)T2 |
| 67 | 1+380.T+3.00e5T2 |
| 71 | 1+(350.+254.i)T+(1.10e5+3.40e5i)T2 |
| 73 | 1+(−313.+965.i)T+(−3.14e5−2.28e5i)T2 |
| 79 | 1+(898.−653.i)T+(1.52e5−4.68e5i)T2 |
| 83 | 1+(51.6+37.5i)T+(1.76e5+5.43e5i)T2 |
| 89 | 1+286.T+7.04e5T2 |
| 97 | 1+(−1.40e3+1.02e3i)T+(2.82e5−8.68e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.01193267990423189540588388921, −11.94002744289388030297442726763, −10.88062917687161907319962108392, −10.01766648027642211859740663603, −8.582208619162298612993883561935, −7.30194962789793316973895365166, −5.86205970168325635113806958967, −4.43446581997911994998657846088, −3.31186025463679516627737081860, −1.03061030836672758833808789726,
2.28477059614129082723958796945, 4.13245643412980690067736971254, 5.30105747326989967741202805519, 6.81478641552940006584448400217, 7.69918829350942413260746260853, 8.947388552277811839107734908864, 10.43798963940556020722775078793, 11.51956235615621018811642980621, 12.60888651477231969929215127720, 13.39683803828297146764994460147