L(s) = 1 | + (−0.809 − 0.587i)2-s + (1 − 3.07i)3-s + (0.309 + 0.951i)4-s + (0.809 − 0.587i)5-s + (−2.61 + 1.90i)6-s + (0.809 + 2.48i)7-s + (0.309 − 0.951i)8-s + (−6.04 − 4.39i)9-s − 10-s + (−2.54 + 2.12i)11-s + 3.23·12-s + (1.30 + 0.951i)13-s + (0.809 − 2.48i)14-s + (−1 − 3.07i)15-s + (−0.809 + 0.587i)16-s + (4.23 − 3.07i)17-s + ⋯ |
L(s) = 1 | + (−0.572 − 0.415i)2-s + (0.577 − 1.77i)3-s + (0.154 + 0.475i)4-s + (0.361 − 0.262i)5-s + (−1.06 + 0.776i)6-s + (0.305 + 0.941i)7-s + (0.109 − 0.336i)8-s + (−2.01 − 1.46i)9-s − 0.316·10-s + (−0.767 + 0.641i)11-s + 0.934·12-s + (0.363 + 0.263i)13-s + (0.216 − 0.665i)14-s + (−0.258 − 0.794i)15-s + (−0.202 + 0.146i)16-s + (1.02 − 0.746i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.220 + 0.975i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.220 + 0.975i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.603531 - 0.755440i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.603531 - 0.755440i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.809 + 0.587i)T \) |
| 5 | \( 1 + (-0.809 + 0.587i)T \) |
| 11 | \( 1 + (2.54 - 2.12i)T \) |
good | 3 | \( 1 + (-1 + 3.07i)T + (-2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (-0.809 - 2.48i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (-1.30 - 0.951i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (-4.23 + 3.07i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (1.26 - 3.88i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 - 0.145T + 23T^{2} \) |
| 29 | \( 1 + (0.381 + 1.17i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-5.85 - 4.25i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (0.263 + 0.812i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (0.572 - 1.76i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 9.23T + 43T^{2} \) |
| 47 | \( 1 + (-3.5 + 10.7i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (0.736 + 0.534i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-0.736 - 2.26i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (7.23 - 5.25i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 0.763T + 67T^{2} \) |
| 71 | \( 1 + (10.7 - 7.77i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (0.527 + 1.62i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-1.23 - 0.898i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (12.7 - 9.23i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 12.0T + 89T^{2} \) |
| 97 | \( 1 + (-9.70 - 7.05i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.18023162403324771957452460501, −12.24473314173808180428992358915, −11.79382528359755014480301140282, −10.01163188693441557956723195924, −8.725274363632144712685088363542, −8.070063971714528121583775495351, −6.98091356769265814758596819409, −5.62095413985784400899036655819, −2.79218766861194229476159210542, −1.63120457434034122612308164467,
3.14377541079798043747284821099, 4.60448263139425405692379786559, 5.87165781259701693233645598767, 7.78732002411149714953887795002, 8.662980336039716331505079858087, 9.850950899887139770989817838847, 10.50779665986759223933459870856, 11.13612388410584567383626327300, 13.46365730799103962294448377100, 14.24129415487598630950886074540