L(s) = 1 | + (−0.809 − 0.587i)2-s + (1 − 3.07i)3-s + (0.309 + 0.951i)4-s + (0.809 − 0.587i)5-s + (−2.61 + 1.90i)6-s + (0.809 + 2.48i)7-s + (0.309 − 0.951i)8-s + (−6.04 − 4.39i)9-s − 10-s + (−2.54 + 2.12i)11-s + 3.23·12-s + (1.30 + 0.951i)13-s + (0.809 − 2.48i)14-s + (−1 − 3.07i)15-s + (−0.809 + 0.587i)16-s + (4.23 − 3.07i)17-s + ⋯ |
L(s) = 1 | + (−0.572 − 0.415i)2-s + (0.577 − 1.77i)3-s + (0.154 + 0.475i)4-s + (0.361 − 0.262i)5-s + (−1.06 + 0.776i)6-s + (0.305 + 0.941i)7-s + (0.109 − 0.336i)8-s + (−2.01 − 1.46i)9-s − 0.316·10-s + (−0.767 + 0.641i)11-s + 0.934·12-s + (0.363 + 0.263i)13-s + (0.216 − 0.665i)14-s + (−0.258 − 0.794i)15-s + (−0.202 + 0.146i)16-s + (1.02 − 0.746i)17-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)(−0.220+0.975i)Λ(2−s)
Λ(s)=(=(110s/2ΓC(s+1/2)L(s)(−0.220+0.975i)Λ(1−s)
Degree: |
2 |
Conductor: |
110
= 2⋅5⋅11
|
Sign: |
−0.220+0.975i
|
Analytic conductor: |
0.878354 |
Root analytic conductor: |
0.937205 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ110(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 110, ( :1/2), −0.220+0.975i)
|
Particular Values
L(1) |
≈ |
0.603531−0.755440i |
L(21) |
≈ |
0.603531−0.755440i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.809+0.587i)T |
| 5 | 1+(−0.809+0.587i)T |
| 11 | 1+(2.54−2.12i)T |
good | 3 | 1+(−1+3.07i)T+(−2.42−1.76i)T2 |
| 7 | 1+(−0.809−2.48i)T+(−5.66+4.11i)T2 |
| 13 | 1+(−1.30−0.951i)T+(4.01+12.3i)T2 |
| 17 | 1+(−4.23+3.07i)T+(5.25−16.1i)T2 |
| 19 | 1+(1.26−3.88i)T+(−15.3−11.1i)T2 |
| 23 | 1−0.145T+23T2 |
| 29 | 1+(0.381+1.17i)T+(−23.4+17.0i)T2 |
| 31 | 1+(−5.85−4.25i)T+(9.57+29.4i)T2 |
| 37 | 1+(0.263+0.812i)T+(−29.9+21.7i)T2 |
| 41 | 1+(0.572−1.76i)T+(−33.1−24.0i)T2 |
| 43 | 1+9.23T+43T2 |
| 47 | 1+(−3.5+10.7i)T+(−38.0−27.6i)T2 |
| 53 | 1+(0.736+0.534i)T+(16.3+50.4i)T2 |
| 59 | 1+(−0.736−2.26i)T+(−47.7+34.6i)T2 |
| 61 | 1+(7.23−5.25i)T+(18.8−58.0i)T2 |
| 67 | 1−0.763T+67T2 |
| 71 | 1+(10.7−7.77i)T+(21.9−67.5i)T2 |
| 73 | 1+(0.527+1.62i)T+(−59.0+42.9i)T2 |
| 79 | 1+(−1.23−0.898i)T+(24.4+75.1i)T2 |
| 83 | 1+(12.7−9.23i)T+(25.6−78.9i)T2 |
| 89 | 1+12.0T+89T2 |
| 97 | 1+(−9.70−7.05i)T+(29.9+92.2i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.18023162403324771957452460501, −12.24473314173808180428992358915, −11.79382528359755014480301140282, −10.01163188693441557956723195924, −8.725274363632144712685088363542, −8.070063971714528121583775495351, −6.98091356769265814758596819409, −5.62095413985784400899036655819, −2.79218766861194229476159210542, −1.63120457434034122612308164467,
3.14377541079798043747284821099, 4.60448263139425405692379786559, 5.87165781259701693233645598767, 7.78732002411149714953887795002, 8.662980336039716331505079858087, 9.850950899887139770989817838847, 10.50779665986759223933459870856, 11.13612388410584567383626327300, 13.46365730799103962294448377100, 14.24129415487598630950886074540