L(s) = 1 | + (0.618 + 1.90i)2-s + (−2.02 − 1.46i)3-s + (−3.23 + 2.35i)4-s + (1.54 − 4.75i)5-s + (1.54 − 4.75i)6-s + (−14.4 + 10.4i)7-s + (−6.47 − 4.70i)8-s + (−6.41 − 19.7i)9-s + 10.0·10-s + (−36.2 + 4.12i)11-s + 9.99·12-s + (−12.0 − 37.1i)13-s + (−28.8 − 20.9i)14-s + (−10.1 + 7.34i)15-s + (4.94 − 15.2i)16-s + (3.94 − 12.1i)17-s + ⋯ |
L(s) = 1 | + (0.218 + 0.672i)2-s + (−0.389 − 0.282i)3-s + (−0.404 + 0.293i)4-s + (0.138 − 0.425i)5-s + (0.105 − 0.323i)6-s + (−0.777 + 0.565i)7-s + (−0.286 − 0.207i)8-s + (−0.237 − 0.731i)9-s + 0.316·10-s + (−0.993 + 0.113i)11-s + 0.240·12-s + (−0.257 − 0.792i)13-s + (−0.550 − 0.399i)14-s + (−0.174 + 0.126i)15-s + (0.0772 − 0.237i)16-s + (0.0562 − 0.173i)17-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)(−0.531+0.846i)Λ(4−s)
Λ(s)=(=(110s/2ΓC(s+3/2)L(s)(−0.531+0.846i)Λ(1−s)
Degree: |
2 |
Conductor: |
110
= 2⋅5⋅11
|
Sign: |
−0.531+0.846i
|
Analytic conductor: |
6.49021 |
Root analytic conductor: |
2.54758 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ110(71,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 110, ( :3/2), −0.531+0.846i)
|
Particular Values
L(2) |
≈ |
0.174879−0.316321i |
L(21) |
≈ |
0.174879−0.316321i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.618−1.90i)T |
| 5 | 1+(−1.54+4.75i)T |
| 11 | 1+(36.2−4.12i)T |
good | 3 | 1+(2.02+1.46i)T+(8.34+25.6i)T2 |
| 7 | 1+(14.4−10.4i)T+(105.−326.i)T2 |
| 13 | 1+(12.0+37.1i)T+(−1.77e3+1.29e3i)T2 |
| 17 | 1+(−3.94+12.1i)T+(−3.97e3−2.88e3i)T2 |
| 19 | 1+(95.3+69.2i)T+(2.11e3+6.52e3i)T2 |
| 23 | 1−62.4T+1.21e4T2 |
| 29 | 1+(−11.0+8.03i)T+(7.53e3−2.31e4i)T2 |
| 31 | 1+(−49.7−153.i)T+(−2.41e4+1.75e4i)T2 |
| 37 | 1+(182.−132.i)T+(1.56e4−4.81e4i)T2 |
| 41 | 1+(213.+155.i)T+(2.12e4+6.55e4i)T2 |
| 43 | 1−154.T+7.95e4T2 |
| 47 | 1+(−126.−92.0i)T+(3.20e4+9.87e4i)T2 |
| 53 | 1+(−54.3−167.i)T+(−1.20e5+8.75e4i)T2 |
| 59 | 1+(701.−509.i)T+(6.34e4−1.95e5i)T2 |
| 61 | 1+(−95.0+292.i)T+(−1.83e5−1.33e5i)T2 |
| 67 | 1−732.T+3.00e5T2 |
| 71 | 1+(−203.+625.i)T+(−2.89e5−2.10e5i)T2 |
| 73 | 1+(−976.+709.i)T+(1.20e5−3.69e5i)T2 |
| 79 | 1+(252.+778.i)T+(−3.98e5+2.89e5i)T2 |
| 83 | 1+(53.8−165.i)T+(−4.62e5−3.36e5i)T2 |
| 89 | 1+892.T+7.04e5T2 |
| 97 | 1+(445.+1.37e3i)T+(−7.38e5+5.36e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.69388453416269476373842427389, −12.32507239515825516412340926990, −10.69612926696695795792968019832, −9.376530640224620879369564155234, −8.428632926489387905859255218695, −7.00349815906581743971096265381, −5.97746766114428535195758478540, −4.96141183712938516336151297434, −3.00006574062740258294889728806, −0.18082874822178170785966694957,
2.37179088090313240999662750624, 3.94836016755950988878156257895, 5.33434993068681128842672018524, 6.65677820154571717266549949344, 8.159959547993356244860913398920, 9.736007700204023344231985294701, 10.50780834918155704274171032604, 11.20632009110183607615641926031, 12.54564138473846904785891021287, 13.41949613368273002538774977797