Properties

Label 2-110-11.9-c3-0-1
Degree $2$
Conductor $110$
Sign $0.371 - 0.928i$
Analytic cond. $6.49021$
Root an. cond. $2.54758$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.618 − 1.90i)2-s + (−3.92 + 2.85i)3-s + (−3.23 − 2.35i)4-s + (−1.54 − 4.75i)5-s + (3.00 + 9.23i)6-s + (5.32 + 3.86i)7-s + (−6.47 + 4.70i)8-s + (−1.05 + 3.25i)9-s − 10.0·10-s + (18.0 + 31.7i)11-s + 19.4·12-s + (−18.7 + 57.6i)13-s + (10.6 − 7.73i)14-s + (19.6 + 14.2i)15-s + (4.94 + 15.2i)16-s + (26.5 + 81.8i)17-s + ⋯
L(s)  = 1  + (0.218 − 0.672i)2-s + (−0.755 + 0.549i)3-s + (−0.404 − 0.293i)4-s + (−0.138 − 0.425i)5-s + (0.204 + 0.628i)6-s + (0.287 + 0.208i)7-s + (−0.286 + 0.207i)8-s + (−0.0391 + 0.120i)9-s − 0.316·10-s + (0.493 + 0.869i)11-s + 0.467·12-s + (−0.399 + 1.22i)13-s + (0.203 − 0.147i)14-s + (0.338 + 0.245i)15-s + (0.0772 + 0.237i)16-s + (0.379 + 1.16i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.371 - 0.928i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.371 - 0.928i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(110\)    =    \(2 \cdot 5 \cdot 11\)
Sign: $0.371 - 0.928i$
Analytic conductor: \(6.49021\)
Root analytic conductor: \(2.54758\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{110} (31, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 110,\ (\ :3/2),\ 0.371 - 0.928i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.794833 + 0.538071i\)
\(L(\frac12)\) \(\approx\) \(0.794833 + 0.538071i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.618 + 1.90i)T \)
5 \( 1 + (1.54 + 4.75i)T \)
11 \( 1 + (-18.0 - 31.7i)T \)
good3 \( 1 + (3.92 - 2.85i)T + (8.34 - 25.6i)T^{2} \)
7 \( 1 + (-5.32 - 3.86i)T + (105. + 326. i)T^{2} \)
13 \( 1 + (18.7 - 57.6i)T + (-1.77e3 - 1.29e3i)T^{2} \)
17 \( 1 + (-26.5 - 81.8i)T + (-3.97e3 + 2.88e3i)T^{2} \)
19 \( 1 + (-2.21 + 1.60i)T + (2.11e3 - 6.52e3i)T^{2} \)
23 \( 1 + 70.7T + 1.21e4T^{2} \)
29 \( 1 + (2.67 + 1.94i)T + (7.53e3 + 2.31e4i)T^{2} \)
31 \( 1 + (-30.9 + 95.2i)T + (-2.41e4 - 1.75e4i)T^{2} \)
37 \( 1 + (-264. - 191. i)T + (1.56e4 + 4.81e4i)T^{2} \)
41 \( 1 + (16.6 - 12.1i)T + (2.12e4 - 6.55e4i)T^{2} \)
43 \( 1 + 469.T + 7.95e4T^{2} \)
47 \( 1 + (238. - 173. i)T + (3.20e4 - 9.87e4i)T^{2} \)
53 \( 1 + (121. - 373. i)T + (-1.20e5 - 8.75e4i)T^{2} \)
59 \( 1 + (-477. - 347. i)T + (6.34e4 + 1.95e5i)T^{2} \)
61 \( 1 + (70.0 + 215. i)T + (-1.83e5 + 1.33e5i)T^{2} \)
67 \( 1 + 177.T + 3.00e5T^{2} \)
71 \( 1 + (163. + 504. i)T + (-2.89e5 + 2.10e5i)T^{2} \)
73 \( 1 + (-734. - 533. i)T + (1.20e5 + 3.69e5i)T^{2} \)
79 \( 1 + (-260. + 802. i)T + (-3.98e5 - 2.89e5i)T^{2} \)
83 \( 1 + (-149. - 460. i)T + (-4.62e5 + 3.36e5i)T^{2} \)
89 \( 1 + 60.8T + 7.04e5T^{2} \)
97 \( 1 + (-79.2 + 244. i)T + (-7.38e5 - 5.36e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.15134169803468967873329205906, −11.97194568006056436837335815168, −11.54603408754412595480618450857, −10.28252765980396979104157359714, −9.465403520533077540722165733843, −8.094629874497301186882541504435, −6.30155745778655762512825432089, −4.93545913443420567199605617826, −4.13016955139014695709850161162, −1.83811215170196671675891062311, 0.54949703419263031430273600822, 3.33692212565432408276811844161, 5.18690494789197914724195961667, 6.20268149792233739495497777644, 7.22286596416538320112581942853, 8.265416626337633058295149022305, 9.778579625802917681215842340039, 11.16906217788216769574632096699, 11.96107013938567183466456297510, 13.01693109184223849865042057452

Graph of the $Z$-function along the critical line