L(s) = 1 | − i·2-s − i·3-s − 4-s + (−2 − i)5-s − 6-s − 3i·7-s + i·8-s + 2·9-s + (−1 + 2i)10-s + 11-s + i·12-s + 4i·13-s − 3·14-s + (−1 + 2i)15-s + 16-s − 3i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.577i·3-s − 0.5·4-s + (−0.894 − 0.447i)5-s − 0.408·6-s − 1.13i·7-s + 0.353i·8-s + 0.666·9-s + (−0.316 + 0.632i)10-s + 0.301·11-s + 0.288i·12-s + 1.10i·13-s − 0.801·14-s + (−0.258 + 0.516i)15-s + 0.250·16-s − 0.727i·17-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)(−0.447+0.894i)Λ(2−s)
Λ(s)=(=(110s/2ΓC(s+1/2)L(s)(−0.447+0.894i)Λ(1−s)
Degree: |
2 |
Conductor: |
110
= 2⋅5⋅11
|
Sign: |
−0.447+0.894i
|
Analytic conductor: |
0.878354 |
Root analytic conductor: |
0.937205 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ110(89,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 110, ( :1/2), −0.447+0.894i)
|
Particular Values
L(1) |
≈ |
0.475490−0.769359i |
L(21) |
≈ |
0.475490−0.769359i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 5 | 1+(2+i)T |
| 11 | 1−T |
good | 3 | 1+iT−3T2 |
| 7 | 1+3iT−7T2 |
| 13 | 1−4iT−13T2 |
| 17 | 1+3iT−17T2 |
| 19 | 1−5T+19T2 |
| 23 | 1−4iT−23T2 |
| 29 | 1+5T+29T2 |
| 31 | 1−7T+31T2 |
| 37 | 1−7iT−37T2 |
| 41 | 1+8T+41T2 |
| 43 | 1+6iT−43T2 |
| 47 | 1+8iT−47T2 |
| 53 | 1−9iT−53T2 |
| 59 | 1+59T2 |
| 61 | 1+13T+61T2 |
| 67 | 1−12iT−67T2 |
| 71 | 1+3T+71T2 |
| 73 | 1+6iT−73T2 |
| 79 | 1+79T2 |
| 83 | 1−4iT−83T2 |
| 89 | 1−15T+89T2 |
| 97 | 1−12iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.45559146327761817173452832323, −11.99190237894301110032142643339, −11.64126003200319204649037279643, −10.23030438801077257222125559895, −9.153928025466994275930952749671, −7.69900240295976557573366582433, −6.96274046055113740750404610805, −4.73295666042138592083941452174, −3.67809253555074976153314280703, −1.23979701549011126191742279765,
3.34762356356885543961032986435, 4.76722448442396233580508980739, 6.09299157010974102633359664300, 7.48095748384322237013966681741, 8.465813242576305933897210105602, 9.651846457079291519356964694508, 10.75261710960811921867710425375, 12.03473824417203603620982899101, 12.90607822286981111208006585851, 14.45421972373257204925312642434