L(s) = 1 | − i·2-s − i·3-s − 4-s + (−2 − i)5-s − 6-s − 3i·7-s + i·8-s + 2·9-s + (−1 + 2i)10-s + 11-s + i·12-s + 4i·13-s − 3·14-s + (−1 + 2i)15-s + 16-s − 3i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.577i·3-s − 0.5·4-s + (−0.894 − 0.447i)5-s − 0.408·6-s − 1.13i·7-s + 0.353i·8-s + 0.666·9-s + (−0.316 + 0.632i)10-s + 0.301·11-s + 0.288i·12-s + 1.10i·13-s − 0.801·14-s + (−0.258 + 0.516i)15-s + 0.250·16-s − 0.727i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.475490 - 0.769359i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.475490 - 0.769359i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 + (2 + i)T \) |
| 11 | \( 1 - T \) |
good | 3 | \( 1 + iT - 3T^{2} \) |
| 7 | \( 1 + 3iT - 7T^{2} \) |
| 13 | \( 1 - 4iT - 13T^{2} \) |
| 17 | \( 1 + 3iT - 17T^{2} \) |
| 19 | \( 1 - 5T + 19T^{2} \) |
| 23 | \( 1 - 4iT - 23T^{2} \) |
| 29 | \( 1 + 5T + 29T^{2} \) |
| 31 | \( 1 - 7T + 31T^{2} \) |
| 37 | \( 1 - 7iT - 37T^{2} \) |
| 41 | \( 1 + 8T + 41T^{2} \) |
| 43 | \( 1 + 6iT - 43T^{2} \) |
| 47 | \( 1 + 8iT - 47T^{2} \) |
| 53 | \( 1 - 9iT - 53T^{2} \) |
| 59 | \( 1 + 59T^{2} \) |
| 61 | \( 1 + 13T + 61T^{2} \) |
| 67 | \( 1 - 12iT - 67T^{2} \) |
| 71 | \( 1 + 3T + 71T^{2} \) |
| 73 | \( 1 + 6iT - 73T^{2} \) |
| 79 | \( 1 + 79T^{2} \) |
| 83 | \( 1 - 4iT - 83T^{2} \) |
| 89 | \( 1 - 15T + 89T^{2} \) |
| 97 | \( 1 - 12iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.45559146327761817173452832323, −11.99190237894301110032142643339, −11.64126003200319204649037279643, −10.23030438801077257222125559895, −9.153928025466994275930952749671, −7.69900240295976557573366582433, −6.96274046055113740750404610805, −4.73295666042138592083941452174, −3.67809253555074976153314280703, −1.23979701549011126191742279765,
3.34762356356885543961032986435, 4.76722448442396233580508980739, 6.09299157010974102633359664300, 7.48095748384322237013966681741, 8.465813242576305933897210105602, 9.651846457079291519356964694508, 10.75261710960811921867710425375, 12.03473824417203603620982899101, 12.90607822286981111208006585851, 14.45421972373257204925312642434