L(s) = 1 | + (−0.891 + 0.453i)2-s + (−2.20 − 0.348i)3-s + (0.587 − 0.809i)4-s + (2.18 + 0.463i)5-s + (2.11 − 0.688i)6-s + (0.620 + 3.91i)7-s + (−0.156 + 0.987i)8-s + (1.87 + 0.608i)9-s + (−2.15 + 0.579i)10-s + (2.83 + 1.71i)11-s + (−1.57 + 1.57i)12-s + (1.35 + 2.65i)13-s + (−2.33 − 3.20i)14-s + (−4.65 − 1.78i)15-s + (−0.309 − 0.951i)16-s + (2.11 − 4.15i)17-s + ⋯ |
L(s) = 1 | + (−0.630 + 0.321i)2-s + (−1.27 − 0.201i)3-s + (0.293 − 0.404i)4-s + (0.978 + 0.207i)5-s + (0.865 − 0.281i)6-s + (0.234 + 1.48i)7-s + (−0.0553 + 0.349i)8-s + (0.623 + 0.202i)9-s + (−0.682 + 0.183i)10-s + (0.856 + 0.516i)11-s + (−0.454 + 0.454i)12-s + (0.375 + 0.736i)13-s + (−0.623 − 0.857i)14-s + (−1.20 − 0.460i)15-s + (−0.0772 − 0.237i)16-s + (0.513 − 1.00i)17-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)(0.516−0.856i)Λ(2−s)
Λ(s)=(=(110s/2ΓC(s+1/2)L(s)(0.516−0.856i)Λ(1−s)
Degree: |
2 |
Conductor: |
110
= 2⋅5⋅11
|
Sign: |
0.516−0.856i
|
Analytic conductor: |
0.878354 |
Root analytic conductor: |
0.937205 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ110(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 110, ( :1/2), 0.516−0.856i)
|
Particular Values
L(1) |
≈ |
0.551932+0.311841i |
L(21) |
≈ |
0.551932+0.311841i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.891−0.453i)T |
| 5 | 1+(−2.18−0.463i)T |
| 11 | 1+(−2.83−1.71i)T |
good | 3 | 1+(2.20+0.348i)T+(2.85+0.927i)T2 |
| 7 | 1+(−0.620−3.91i)T+(−6.65+2.16i)T2 |
| 13 | 1+(−1.35−2.65i)T+(−7.64+10.5i)T2 |
| 17 | 1+(−2.11+4.15i)T+(−9.99−13.7i)T2 |
| 19 | 1+(2.59−1.88i)T+(5.87−18.0i)T2 |
| 23 | 1+(5.14+5.14i)T+23iT2 |
| 29 | 1+(0.0660+0.0479i)T+(8.96+27.5i)T2 |
| 31 | 1+(0.600−1.84i)T+(−25.0−18.2i)T2 |
| 37 | 1+(5.78−0.916i)T+(35.1−11.4i)T2 |
| 41 | 1+(−1.64−2.25i)T+(−12.6+38.9i)T2 |
| 43 | 1+(−2.07+2.07i)T−43iT2 |
| 47 | 1+(−1.92+12.1i)T+(−44.6−14.5i)T2 |
| 53 | 1+(3.28−1.67i)T+(31.1−42.8i)T2 |
| 59 | 1+(−1.48+2.04i)T+(−18.2−56.1i)T2 |
| 61 | 1+(−1.70+0.554i)T+(49.3−35.8i)T2 |
| 67 | 1+(−2.34+2.34i)T−67iT2 |
| 71 | 1+(1.98+6.11i)T+(−57.4+41.7i)T2 |
| 73 | 1+(−7.72+1.22i)T+(69.4−22.5i)T2 |
| 79 | 1+(−3.80+11.7i)T+(−63.9−46.4i)T2 |
| 83 | 1+(−13.4−6.86i)T+(48.7+67.1i)T2 |
| 89 | 1+5.99iT−89T2 |
| 97 | 1+(4.98+9.78i)T+(−57.0+78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.03874244951891938644957899755, −12.28966143356969482970917376882, −11.85964271329066783678000877798, −10.66740087876794407187124065825, −9.541572763454856233493077476785, −8.643131777325919250256690337212, −6.75379019814855682517407829929, −6.08403735203626021204542198379, −5.11969926623961597769338112611, −1.98032771384966181681926318828,
1.15741953883737973505121558771, 3.97709710890615481220232866398, 5.65239090232570202116099677942, 6.59974874323114408099518144172, 8.093040034741627318201772664244, 9.577836152488659702610765905719, 10.59165627167787219599264804035, 10.97331366200917866420985435627, 12.25804558415167257561531353598, 13.35426362776811411619027073425