L(s) = 1 | + (−0.891 + 0.453i)2-s + (−1.23 − 0.194i)3-s + (0.587 − 0.809i)4-s + (−1.87 − 1.22i)5-s + (1.18 − 0.384i)6-s + (−0.466 − 2.94i)7-s + (−0.156 + 0.987i)8-s + (−1.37 − 0.447i)9-s + (2.22 + 0.242i)10-s + (3.28 − 0.461i)11-s + (−0.880 + 0.880i)12-s + (−2.73 − 5.36i)13-s + (1.75 + 2.41i)14-s + (2.06 + 1.87i)15-s + (−0.309 − 0.951i)16-s + (−3.00 + 5.89i)17-s + ⋯ |
L(s) = 1 | + (−0.630 + 0.321i)2-s + (−0.710 − 0.112i)3-s + (0.293 − 0.404i)4-s + (−0.836 − 0.547i)5-s + (0.483 − 0.157i)6-s + (−0.176 − 1.11i)7-s + (−0.0553 + 0.349i)8-s + (−0.459 − 0.149i)9-s + (0.702 + 0.0765i)10-s + (0.990 − 0.139i)11-s + (−0.254 + 0.254i)12-s + (−0.757 − 1.48i)13-s + (0.468 + 0.645i)14-s + (0.532 + 0.483i)15-s + (−0.0772 − 0.237i)16-s + (−0.728 + 1.42i)17-s + ⋯ |
Λ(s)=(=(110s/2ΓC(s)L(s)(−0.228+0.973i)Λ(2−s)
Λ(s)=(=(110s/2ΓC(s+1/2)L(s)(−0.228+0.973i)Λ(1−s)
Degree: |
2 |
Conductor: |
110
= 2⋅5⋅11
|
Sign: |
−0.228+0.973i
|
Analytic conductor: |
0.878354 |
Root analytic conductor: |
0.937205 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ110(13,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 110, ( :1/2), −0.228+0.973i)
|
Particular Values
L(1) |
≈ |
0.247815−0.312672i |
L(21) |
≈ |
0.247815−0.312672i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.891−0.453i)T |
| 5 | 1+(1.87+1.22i)T |
| 11 | 1+(−3.28+0.461i)T |
good | 3 | 1+(1.23+0.194i)T+(2.85+0.927i)T2 |
| 7 | 1+(0.466+2.94i)T+(−6.65+2.16i)T2 |
| 13 | 1+(2.73+5.36i)T+(−7.64+10.5i)T2 |
| 17 | 1+(3.00−5.89i)T+(−9.99−13.7i)T2 |
| 19 | 1+(−1.55+1.13i)T+(5.87−18.0i)T2 |
| 23 | 1+(−0.606−0.606i)T+23iT2 |
| 29 | 1+(3.56+2.58i)T+(8.96+27.5i)T2 |
| 31 | 1+(0.337−1.03i)T+(−25.0−18.2i)T2 |
| 37 | 1+(−7.26+1.15i)T+(35.1−11.4i)T2 |
| 41 | 1+(4.84+6.66i)T+(−12.6+38.9i)T2 |
| 43 | 1+(−3.90+3.90i)T−43iT2 |
| 47 | 1+(−1.14+7.22i)T+(−44.6−14.5i)T2 |
| 53 | 1+(−4.55+2.32i)T+(31.1−42.8i)T2 |
| 59 | 1+(−4.39+6.04i)T+(−18.2−56.1i)T2 |
| 61 | 1+(4.11−1.33i)T+(49.3−35.8i)T2 |
| 67 | 1+(1.06−1.06i)T−67iT2 |
| 71 | 1+(−1.18−3.65i)T+(−57.4+41.7i)T2 |
| 73 | 1+(−0.684+0.108i)T+(69.4−22.5i)T2 |
| 79 | 1+(−1.26+3.88i)T+(−63.9−46.4i)T2 |
| 83 | 1+(0.881+0.449i)T+(48.7+67.1i)T2 |
| 89 | 1−12.5iT−89T2 |
| 97 | 1+(2.26+4.45i)T+(−57.0+78.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.20745450629782278180956098196, −12.16709273916606570464468286557, −11.17286544538601893017623672032, −10.33002967514491640881177414490, −8.916793204170908861944917586804, −7.84106964682532978085128569786, −6.79355118372691834440958054201, −5.46863230365923762869097884591, −3.86049662298231527757833314468, −0.59035972646171440629408156086,
2.67226787918358878276110199603, 4.56342406878667376965849257020, 6.29337483110922613490163499968, 7.30752988425534361748469980639, 8.841307529029690848019524160208, 9.596455841125042274255049900216, 11.28585589924687723062603437451, 11.58216952407677305854697326468, 12.29471399113750117118090761238, 14.13296733568280238133895993341