L(s) = 1 | + (−0.156 − 0.987i)2-s + (1.48 − 0.757i)3-s + (−0.951 + 0.309i)4-s + (0.923 + 2.03i)5-s + (−0.980 − 1.35i)6-s + (1.49 − 2.92i)7-s + (0.453 + 0.891i)8-s + (−0.126 + 0.174i)9-s + (1.86 − 1.23i)10-s + (−3.16 − 0.977i)11-s + (−1.18 + 1.18i)12-s + (−6.10 + 0.966i)13-s + (−3.12 − 1.01i)14-s + (2.91 + 2.32i)15-s + (0.809 − 0.587i)16-s + (5.30 + 0.839i)17-s + ⋯ |
L(s) = 1 | + (−0.110 − 0.698i)2-s + (0.858 − 0.437i)3-s + (−0.475 + 0.154i)4-s + (0.413 + 0.910i)5-s + (−0.400 − 0.551i)6-s + (0.564 − 1.10i)7-s + (0.160 + 0.315i)8-s + (−0.0421 + 0.0580i)9-s + (0.590 − 0.389i)10-s + (−0.955 − 0.294i)11-s + (−0.340 + 0.340i)12-s + (−1.69 + 0.268i)13-s + (−0.835 − 0.271i)14-s + (0.753 + 0.601i)15-s + (0.202 − 0.146i)16-s + (1.28 + 0.203i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.567 + 0.823i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.567 + 0.823i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.07587 - 0.565399i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.07587 - 0.565399i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.156 + 0.987i)T \) |
| 5 | \( 1 + (-0.923 - 2.03i)T \) |
| 11 | \( 1 + (3.16 + 0.977i)T \) |
good | 3 | \( 1 + (-1.48 + 0.757i)T + (1.76 - 2.42i)T^{2} \) |
| 7 | \( 1 + (-1.49 + 2.92i)T + (-4.11 - 5.66i)T^{2} \) |
| 13 | \( 1 + (6.10 - 0.966i)T + (12.3 - 4.01i)T^{2} \) |
| 17 | \( 1 + (-5.30 - 0.839i)T + (16.1 + 5.25i)T^{2} \) |
| 19 | \( 1 + (0.213 - 0.657i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + (-3.92 - 3.92i)T + 23iT^{2} \) |
| 29 | \( 1 + (0.689 + 2.12i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (4.63 + 3.37i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (2.91 + 1.48i)T + (21.7 + 29.9i)T^{2} \) |
| 41 | \( 1 + (-1.24 - 0.404i)T + (33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + (-4.38 + 4.38i)T - 43iT^{2} \) |
| 47 | \( 1 + (-0.800 - 1.57i)T + (-27.6 + 38.0i)T^{2} \) |
| 53 | \( 1 + (0.489 + 3.09i)T + (-50.4 + 16.3i)T^{2} \) |
| 59 | \( 1 + (0.820 - 0.266i)T + (47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (5.96 + 8.20i)T + (-18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + (-9.05 + 9.05i)T - 67iT^{2} \) |
| 71 | \( 1 + (-1.58 + 1.15i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (2.99 + 1.52i)T + (42.9 + 59.0i)T^{2} \) |
| 79 | \( 1 + (-3.40 - 2.47i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-0.944 + 5.96i)T + (-78.9 - 25.6i)T^{2} \) |
| 89 | \( 1 - 4.90iT - 89T^{2} \) |
| 97 | \( 1 + (-14.9 + 2.36i)T + (92.2 - 29.9i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.68116675857975232651428867293, −12.62275645950030469651633521972, −11.19743473688075425516994344168, −10.39606553641156762551671369716, −9.460934471553127249226367763319, −7.73844560648048008237879335269, −7.44257599016247310979829358799, −5.23926807000446600239925951034, −3.37296137177898831375214993092, −2.14260139310860965127388052435,
2.63027466184134752954792097827, 4.85080199626155258351381644451, 5.53297526743254050854104585323, 7.53860060093696951787991338374, 8.515444928603924714252189184257, 9.274941194094353131768071934384, 10.15640467438504070231989626403, 12.13918155705355191110245255840, 12.80441849269761696036718872296, 14.27236438013607311341586640113