L(s) = 1 | + 21.2·3-s − 140.·7-s + 206.·9-s + 121·11-s + 1.07e3·13-s − 2.02e3·17-s + 79.8·19-s − 2.98e3·21-s + 96.0·23-s − 764.·27-s + 1.69e3·29-s + 2.33e3·31-s + 2.56e3·33-s + 6.71e3·37-s + 2.27e4·39-s + 1.99e4·41-s + 3.48e3·43-s + 7.98e3·47-s + 3.06e3·49-s − 4.28e4·51-s − 3.28e4·53-s + 1.69e3·57-s − 4.79e4·59-s + 1.99e4·61-s − 2.91e4·63-s + 2.24e4·67-s + 2.03e3·69-s + ⋯ |
L(s) = 1 | + 1.36·3-s − 1.08·7-s + 0.851·9-s + 0.301·11-s + 1.75·13-s − 1.69·17-s + 0.0507·19-s − 1.47·21-s + 0.0378·23-s − 0.201·27-s + 0.373·29-s + 0.435·31-s + 0.410·33-s + 0.806·37-s + 2.39·39-s + 1.85·41-s + 0.287·43-s + 0.527·47-s + 0.182·49-s − 2.30·51-s − 1.60·53-s + 0.0690·57-s − 1.79·59-s + 0.685·61-s − 0.925·63-s + 0.611·67-s + 0.0515·69-s + ⋯ |
Λ(s)=(=(1100s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(1100s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
3.524803534 |
L(21) |
≈ |
3.524803534 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 11 | 1−121T |
good | 3 | 1−21.2T+243T2 |
| 7 | 1+140.T+1.68e4T2 |
| 13 | 1−1.07e3T+3.71e5T2 |
| 17 | 1+2.02e3T+1.41e6T2 |
| 19 | 1−79.8T+2.47e6T2 |
| 23 | 1−96.0T+6.43e6T2 |
| 29 | 1−1.69e3T+2.05e7T2 |
| 31 | 1−2.33e3T+2.86e7T2 |
| 37 | 1−6.71e3T+6.93e7T2 |
| 41 | 1−1.99e4T+1.15e8T2 |
| 43 | 1−3.48e3T+1.47e8T2 |
| 47 | 1−7.98e3T+2.29e8T2 |
| 53 | 1+3.28e4T+4.18e8T2 |
| 59 | 1+4.79e4T+7.14e8T2 |
| 61 | 1−1.99e4T+8.44e8T2 |
| 67 | 1−2.24e4T+1.35e9T2 |
| 71 | 1−9.67e3T+1.80e9T2 |
| 73 | 1−2.07e4T+2.07e9T2 |
| 79 | 1−9.56e4T+3.07e9T2 |
| 83 | 1−2.45e4T+3.93e9T2 |
| 89 | 1−6.79e4T+5.58e9T2 |
| 97 | 1−7.60e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.164643908543061920431643253024, −8.459381356217162728549569921863, −7.67397776338948057449731722160, −6.50034356767374029387290476495, −6.12946618679861536854256726970, −4.44516207644179983788323522076, −3.67818527367736416934057964646, −2.93866479704281369527279350870, −2.02184468734267250435254703291, −0.74209466607610779834925408269,
0.74209466607610779834925408269, 2.02184468734267250435254703291, 2.93866479704281369527279350870, 3.67818527367736416934057964646, 4.44516207644179983788323522076, 6.12946618679861536854256726970, 6.50034356767374029387290476495, 7.67397776338948057449731722160, 8.459381356217162728549569921863, 9.164643908543061920431643253024