Properties

Label 2-1100-1.1-c5-0-32
Degree $2$
Conductor $1100$
Sign $1$
Analytic cond. $176.422$
Root an. cond. $13.2824$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 21.2·3-s − 140.·7-s + 206.·9-s + 121·11-s + 1.07e3·13-s − 2.02e3·17-s + 79.8·19-s − 2.98e3·21-s + 96.0·23-s − 764.·27-s + 1.69e3·29-s + 2.33e3·31-s + 2.56e3·33-s + 6.71e3·37-s + 2.27e4·39-s + 1.99e4·41-s + 3.48e3·43-s + 7.98e3·47-s + 3.06e3·49-s − 4.28e4·51-s − 3.28e4·53-s + 1.69e3·57-s − 4.79e4·59-s + 1.99e4·61-s − 2.91e4·63-s + 2.24e4·67-s + 2.03e3·69-s + ⋯
L(s)  = 1  + 1.36·3-s − 1.08·7-s + 0.851·9-s + 0.301·11-s + 1.75·13-s − 1.69·17-s + 0.0507·19-s − 1.47·21-s + 0.0378·23-s − 0.201·27-s + 0.373·29-s + 0.435·31-s + 0.410·33-s + 0.806·37-s + 2.39·39-s + 1.85·41-s + 0.287·43-s + 0.527·47-s + 0.182·49-s − 2.30·51-s − 1.60·53-s + 0.0690·57-s − 1.79·59-s + 0.685·61-s − 0.925·63-s + 0.611·67-s + 0.0515·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1100\)    =    \(2^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(176.422\)
Root analytic conductor: \(13.2824\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1100,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.524803534\)
\(L(\frac12)\) \(\approx\) \(3.524803534\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 - 121T \)
good3 \( 1 - 21.2T + 243T^{2} \)
7 \( 1 + 140.T + 1.68e4T^{2} \)
13 \( 1 - 1.07e3T + 3.71e5T^{2} \)
17 \( 1 + 2.02e3T + 1.41e6T^{2} \)
19 \( 1 - 79.8T + 2.47e6T^{2} \)
23 \( 1 - 96.0T + 6.43e6T^{2} \)
29 \( 1 - 1.69e3T + 2.05e7T^{2} \)
31 \( 1 - 2.33e3T + 2.86e7T^{2} \)
37 \( 1 - 6.71e3T + 6.93e7T^{2} \)
41 \( 1 - 1.99e4T + 1.15e8T^{2} \)
43 \( 1 - 3.48e3T + 1.47e8T^{2} \)
47 \( 1 - 7.98e3T + 2.29e8T^{2} \)
53 \( 1 + 3.28e4T + 4.18e8T^{2} \)
59 \( 1 + 4.79e4T + 7.14e8T^{2} \)
61 \( 1 - 1.99e4T + 8.44e8T^{2} \)
67 \( 1 - 2.24e4T + 1.35e9T^{2} \)
71 \( 1 - 9.67e3T + 1.80e9T^{2} \)
73 \( 1 - 2.07e4T + 2.07e9T^{2} \)
79 \( 1 - 9.56e4T + 3.07e9T^{2} \)
83 \( 1 - 2.45e4T + 3.93e9T^{2} \)
89 \( 1 - 6.79e4T + 5.58e9T^{2} \)
97 \( 1 - 7.60e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.164643908543061920431643253024, −8.459381356217162728549569921863, −7.67397776338948057449731722160, −6.50034356767374029387290476495, −6.12946618679861536854256726970, −4.44516207644179983788323522076, −3.67818527367736416934057964646, −2.93866479704281369527279350870, −2.02184468734267250435254703291, −0.74209466607610779834925408269, 0.74209466607610779834925408269, 2.02184468734267250435254703291, 2.93866479704281369527279350870, 3.67818527367736416934057964646, 4.44516207644179983788323522076, 6.12946618679861536854256726970, 6.50034356767374029387290476495, 7.67397776338948057449731722160, 8.459381356217162728549569921863, 9.164643908543061920431643253024

Graph of the $Z$-function along the critical line