L(s) = 1 | + (0.321 − 0.989i)3-s + (0.699 + 2.15i)7-s + (1.55 + 1.12i)9-s + (−2.50 + 2.16i)11-s + (−0.217 − 0.157i)13-s + (−4.79 + 3.48i)17-s + (−1.77 + 5.46i)19-s + 2.35·21-s − 2.92·23-s + (4.13 − 3.00i)27-s + (2.00 + 6.16i)29-s + (−0.202 − 0.146i)31-s + (1.34 + 3.17i)33-s + (−3.18 − 9.79i)37-s + (−0.225 + 0.164i)39-s + ⋯ |
L(s) = 1 | + (0.185 − 0.571i)3-s + (0.264 + 0.813i)7-s + (0.517 + 0.375i)9-s + (−0.756 + 0.654i)11-s + (−0.0601 − 0.0437i)13-s + (−1.16 + 0.844i)17-s + (−0.407 + 1.25i)19-s + 0.513·21-s − 0.610·23-s + (0.796 − 0.578i)27-s + (0.371 + 1.14i)29-s + (−0.0363 − 0.0263i)31-s + (0.233 + 0.553i)33-s + (−0.523 − 1.61i)37-s + (−0.0361 + 0.0262i)39-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.204 - 0.978i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.204 - 0.978i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.349020303\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.349020303\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (2.50 - 2.16i)T \) |
good | 3 | \( 1 + (-0.321 + 0.989i)T + (-2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (-0.699 - 2.15i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (0.217 + 0.157i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (4.79 - 3.48i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (1.77 - 5.46i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 2.92T + 23T^{2} \) |
| 29 | \( 1 + (-2.00 - 6.16i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (0.202 + 0.146i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (3.18 + 9.79i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (0.730 - 2.24i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 + 7.56T + 43T^{2} \) |
| 47 | \( 1 + (0.349 - 1.07i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (-8.25 - 5.99i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (-3.52 - 10.8i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (-3.73 + 2.71i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 - 6.11T + 67T^{2} \) |
| 71 | \( 1 + (4.11 - 2.99i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (2.52 + 7.75i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-6.71 - 4.88i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-13.2 + 9.65i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 + 5.73T + 89T^{2} \) |
| 97 | \( 1 + (-3.65 - 2.65i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.28451455486558671019876222447, −9.001831118150046083668826570749, −8.342342903252350967602849441752, −7.61576379018627170302788119060, −6.77679008099699964515567885934, −5.82110556296640175344503208846, −4.90566058467562133030035121648, −3.89943946449292961670933999378, −2.35614257417165989008524587201, −1.77722994618713293408940274423,
0.56235989430303020513116724707, 2.34854775999596368887724224267, 3.51201877451047481420628366329, 4.47223481188656011912914839372, 5.07337401372084203913481600088, 6.50640285503763083519348132425, 7.07609766006653730819255393288, 8.166978346734256910933914153489, 8.850116477921805230217408626441, 9.828381758482993571199217041343