Properties

Label 2-1100-5.4-c5-0-8
Degree $2$
Conductor $1100$
Sign $-0.894 + 0.447i$
Analytic cond. $176.422$
Root an. cond. $13.2824$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.57i·3-s + 209. i·7-s + 222.·9-s − 121·11-s + 100. i·13-s + 978. i·17-s − 1.35e3·19-s − 957.·21-s + 2.07e3i·23-s + 2.12e3i·27-s + 4.87e3·29-s − 6.30e3·31-s − 553. i·33-s − 541. i·37-s − 460.·39-s + ⋯
L(s)  = 1  + 0.293i·3-s + 1.61i·7-s + 0.913·9-s − 0.301·11-s + 0.165i·13-s + 0.821i·17-s − 0.859·19-s − 0.474·21-s + 0.818i·23-s + 0.562i·27-s + 1.07·29-s − 1.17·31-s − 0.0885i·33-s − 0.0650i·37-s − 0.0484·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1100 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1100\)    =    \(2^{2} \cdot 5^{2} \cdot 11\)
Sign: $-0.894 + 0.447i$
Analytic conductor: \(176.422\)
Root analytic conductor: \(13.2824\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{1100} (749, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1100,\ (\ :5/2),\ -0.894 + 0.447i)\)

Particular Values

\(L(3)\) \(\approx\) \(1.116588954\)
\(L(\frac12)\) \(\approx\) \(1.116588954\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 \)
11 \( 1 + 121T \)
good3 \( 1 - 4.57iT - 243T^{2} \)
7 \( 1 - 209. iT - 1.68e4T^{2} \)
13 \( 1 - 100. iT - 3.71e5T^{2} \)
17 \( 1 - 978. iT - 1.41e6T^{2} \)
19 \( 1 + 1.35e3T + 2.47e6T^{2} \)
23 \( 1 - 2.07e3iT - 6.43e6T^{2} \)
29 \( 1 - 4.87e3T + 2.05e7T^{2} \)
31 \( 1 + 6.30e3T + 2.86e7T^{2} \)
37 \( 1 + 541. iT - 6.93e7T^{2} \)
41 \( 1 + 1.11e4T + 1.15e8T^{2} \)
43 \( 1 + 9.10e3iT - 1.47e8T^{2} \)
47 \( 1 - 2.78e4iT - 2.29e8T^{2} \)
53 \( 1 + 7.75e3iT - 4.18e8T^{2} \)
59 \( 1 - 3.83e4T + 7.14e8T^{2} \)
61 \( 1 + 4.35e4T + 8.44e8T^{2} \)
67 \( 1 - 1.65e3iT - 1.35e9T^{2} \)
71 \( 1 - 2.69e4T + 1.80e9T^{2} \)
73 \( 1 - 8.28e4iT - 2.07e9T^{2} \)
79 \( 1 + 6.33e3T + 3.07e9T^{2} \)
83 \( 1 + 5.17e4iT - 3.93e9T^{2} \)
89 \( 1 - 1.41e4T + 5.58e9T^{2} \)
97 \( 1 + 8.30e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.541177384378772181190053386849, −8.808493736649738691112404048374, −8.145843133349777116901772857597, −7.06373372430142317374029304125, −6.13299368490930207642538136159, −5.38228253229574639388389998816, −4.48475517861725488588317987357, −3.45371093492035312334919108288, −2.32028000850917794412946737330, −1.51109798408930275191290736642, 0.21958748931528972100012494695, 1.00399527498375262880513036906, 2.10655300103796123117836750873, 3.42500557979857258995416102105, 4.31498130189266359209343360472, 4.99899325181694724794029351008, 6.45008530668366185101137008872, 7.01382528753420104195893889373, 7.66666875332713262056129542470, 8.520249458058456533699302828888

Graph of the $Z$-function along the critical line