L(s) = 1 | + 4.57i·3-s + 209. i·7-s + 222.·9-s − 121·11-s + 100. i·13-s + 978. i·17-s − 1.35e3·19-s − 957.·21-s + 2.07e3i·23-s + 2.12e3i·27-s + 4.87e3·29-s − 6.30e3·31-s − 553. i·33-s − 541. i·37-s − 460.·39-s + ⋯ |
L(s) = 1 | + 0.293i·3-s + 1.61i·7-s + 0.913·9-s − 0.301·11-s + 0.165i·13-s + 0.821i·17-s − 0.859·19-s − 0.474·21-s + 0.818i·23-s + 0.562i·27-s + 1.07·29-s − 1.17·31-s − 0.0885i·33-s − 0.0650i·37-s − 0.0484·39-s + ⋯ |
Λ(s)=(=(1100s/2ΓC(s)L(s)(−0.894+0.447i)Λ(6−s)
Λ(s)=(=(1100s/2ΓC(s+5/2)L(s)(−0.894+0.447i)Λ(1−s)
Degree: |
2 |
Conductor: |
1100
= 22⋅52⋅11
|
Sign: |
−0.894+0.447i
|
Analytic conductor: |
176.422 |
Root analytic conductor: |
13.2824 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1100(749,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1100, ( :5/2), −0.894+0.447i)
|
Particular Values
L(3) |
≈ |
1.116588954 |
L(21) |
≈ |
1.116588954 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1 |
| 11 | 1+121T |
good | 3 | 1−4.57iT−243T2 |
| 7 | 1−209.iT−1.68e4T2 |
| 13 | 1−100.iT−3.71e5T2 |
| 17 | 1−978.iT−1.41e6T2 |
| 19 | 1+1.35e3T+2.47e6T2 |
| 23 | 1−2.07e3iT−6.43e6T2 |
| 29 | 1−4.87e3T+2.05e7T2 |
| 31 | 1+6.30e3T+2.86e7T2 |
| 37 | 1+541.iT−6.93e7T2 |
| 41 | 1+1.11e4T+1.15e8T2 |
| 43 | 1+9.10e3iT−1.47e8T2 |
| 47 | 1−2.78e4iT−2.29e8T2 |
| 53 | 1+7.75e3iT−4.18e8T2 |
| 59 | 1−3.83e4T+7.14e8T2 |
| 61 | 1+4.35e4T+8.44e8T2 |
| 67 | 1−1.65e3iT−1.35e9T2 |
| 71 | 1−2.69e4T+1.80e9T2 |
| 73 | 1−8.28e4iT−2.07e9T2 |
| 79 | 1+6.33e3T+3.07e9T2 |
| 83 | 1+5.17e4iT−3.93e9T2 |
| 89 | 1−1.41e4T+5.58e9T2 |
| 97 | 1+8.30e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.541177384378772181190053386849, −8.808493736649738691112404048374, −8.145843133349777116901772857597, −7.06373372430142317374029304125, −6.13299368490930207642538136159, −5.38228253229574639388389998816, −4.48475517861725488588317987357, −3.45371093492035312334919108288, −2.32028000850917794412946737330, −1.51109798408930275191290736642,
0.21958748931528972100012494695, 1.00399527498375262880513036906, 2.10655300103796123117836750873, 3.42500557979857258995416102105, 4.31498130189266359209343360472, 4.99899325181694724794029351008, 6.45008530668366185101137008872, 7.01382528753420104195893889373, 7.66666875332713262056129542470, 8.520249458058456533699302828888