Properties

Label 2-110670-1.1-c1-0-18
Degree $2$
Conductor $110670$
Sign $1$
Analytic cond. $883.704$
Root an. cond. $29.7271$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s + 7-s − 8-s + 9-s − 10-s + 12-s − 13-s − 14-s + 15-s + 16-s + 17-s − 18-s + 5·19-s + 20-s + 21-s − 3·23-s − 24-s + 25-s + 26-s + 27-s + 28-s − 3·29-s − 30-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.288·12-s − 0.277·13-s − 0.267·14-s + 0.258·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s + 1.14·19-s + 0.223·20-s + 0.218·21-s − 0.625·23-s − 0.204·24-s + 1/5·25-s + 0.196·26-s + 0.192·27-s + 0.188·28-s − 0.557·29-s − 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 110670 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110670 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(110670\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31\)
Sign: $1$
Analytic conductor: \(883.704\)
Root analytic conductor: \(29.7271\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 110670,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.182331839\)
\(L(\frac12)\) \(\approx\) \(3.182331839\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 - T \)
31 \( 1 - T \)
good11 \( 1 + p T^{2} \)
13 \( 1 + T + p T^{2} \)
19 \( 1 - 5 T + p T^{2} \)
23 \( 1 + 3 T + p T^{2} \)
29 \( 1 + 3 T + p T^{2} \)
37 \( 1 - 11 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + 3 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 + T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 - 6 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.67638217717226, −13.19355684126266, −12.73199190837579, −12.05538496336393, −11.72447540997303, −11.13121189143117, −10.61105635790118, −10.13267910354687, −9.549663832590038, −9.326221184852871, −8.829194907221277, −8.138466929673498, −7.604179739423918, −7.526891896093217, −6.745536822738579, −6.076009259524598, −5.644418270185105, −5.080996940800354, −4.233477151332721, −3.879154485528115, −2.867943356012189, −2.635273443994216, −1.912127286089923, −1.225164838238428, −0.6404644260064002, 0.6404644260064002, 1.225164838238428, 1.912127286089923, 2.635273443994216, 2.867943356012189, 3.879154485528115, 4.233477151332721, 5.080996940800354, 5.644418270185105, 6.076009259524598, 6.745536822738579, 7.526891896093217, 7.604179739423918, 8.138466929673498, 8.829194907221277, 9.326221184852871, 9.549663832590038, 10.13267910354687, 10.61105635790118, 11.13121189143117, 11.72447540997303, 12.05538496336393, 12.73199190837579, 13.19355684126266, 13.67638217717226

Graph of the $Z$-function along the critical line