Properties

Label 2-110670-1.1-c1-0-25
Degree $2$
Conductor $110670$
Sign $1$
Analytic cond. $883.704$
Root an. cond. $29.7271$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 7-s − 8-s + 9-s − 10-s + 6·11-s − 12-s + 6·13-s + 14-s − 15-s + 16-s − 17-s − 18-s + 6·19-s + 20-s + 21-s − 6·22-s + 6·23-s + 24-s + 25-s − 6·26-s − 27-s − 28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.80·11-s − 0.288·12-s + 1.66·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.242·17-s − 0.235·18-s + 1.37·19-s + 0.223·20-s + 0.218·21-s − 1.27·22-s + 1.25·23-s + 0.204·24-s + 1/5·25-s − 1.17·26-s − 0.192·27-s − 0.188·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 110670 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110670 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(110670\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31\)
Sign: $1$
Analytic conductor: \(883.704\)
Root analytic conductor: \(29.7271\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 110670,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.757517303\)
\(L(\frac12)\) \(\approx\) \(2.757517303\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 + T \)
17 \( 1 + T \)
31 \( 1 + T \)
good11 \( 1 - 6 T + p T^{2} \)
13 \( 1 - 6 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 6 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 + 4 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 - 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.63562567437381, −13.14369320461835, −12.65465512406251, −11.98563709599159, −11.57737137783467, −11.22767361546962, −10.79667006222685, −10.20322112840294, −9.560175047424054, −9.280085123860994, −8.909361679879732, −8.317777397215251, −7.682654035745839, −6.891230626099738, −6.687549208637810, −6.254709539567245, −5.660394531703729, −5.203832136699348, −4.291982342468172, −3.786466710391645, −3.252449502205915, −2.541221805201484, −1.537293524268390, −1.147271639249301, −0.7285598703238091, 0.7285598703238091, 1.147271639249301, 1.537293524268390, 2.541221805201484, 3.252449502205915, 3.786466710391645, 4.291982342468172, 5.203832136699348, 5.660394531703729, 6.254709539567245, 6.687549208637810, 6.891230626099738, 7.682654035745839, 8.317777397215251, 8.909361679879732, 9.280085123860994, 9.560175047424054, 10.20322112840294, 10.79667006222685, 11.22767361546962, 11.57737137783467, 11.98563709599159, 12.65465512406251, 13.14369320461835, 13.63562567437381

Graph of the $Z$-function along the critical line