Properties

Label 2-110670-1.1-c1-0-27
Degree $2$
Conductor $110670$
Sign $-1$
Analytic cond. $883.704$
Root an. cond. $29.7271$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s + 7-s − 8-s + 9-s − 10-s − 4·11-s − 12-s − 4·13-s − 14-s − 15-s + 16-s + 17-s − 18-s + 20-s − 21-s + 4·22-s + 24-s + 25-s + 4·26-s − 27-s + 28-s − 2·29-s + 30-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.20·11-s − 0.288·12-s − 1.10·13-s − 0.267·14-s − 0.258·15-s + 1/4·16-s + 0.242·17-s − 0.235·18-s + 0.223·20-s − 0.218·21-s + 0.852·22-s + 0.204·24-s + 1/5·25-s + 0.784·26-s − 0.192·27-s + 0.188·28-s − 0.371·29-s + 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 110670 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 110670 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(110670\)    =    \(2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31\)
Sign: $-1$
Analytic conductor: \(883.704\)
Root analytic conductor: \(29.7271\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 110670,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 - T \)
17 \( 1 - T \)
31 \( 1 - T \)
good11 \( 1 + 4 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 + 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + 2 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 10 T + p T^{2} \)
83 \( 1 + 4 T + p T^{2} \)
89 \( 1 - 10 T + p T^{2} \)
97 \( 1 + 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.72858694853988, −13.46986736517781, −12.74717521646160, −12.39635445550610, −11.91153690860612, −11.37724669255844, −10.86871952040400, −10.38878070631201, −10.06054082845393, −9.608604860366874, −9.007875303252846, −8.474158593436810, −7.791603873975314, −7.545519184647879, −6.981721344154608, −6.429806365686981, −5.654905659862866, −5.436733386898711, −4.852913108999670, −4.260017335549170, −3.424704366363025, −2.512192335162444, −2.379367798205579, −1.504066664891541, −0.7405553061935173, 0, 0.7405553061935173, 1.504066664891541, 2.379367798205579, 2.512192335162444, 3.424704366363025, 4.260017335549170, 4.852913108999670, 5.436733386898711, 5.654905659862866, 6.429806365686981, 6.981721344154608, 7.545519184647879, 7.791603873975314, 8.474158593436810, 9.007875303252846, 9.608604860366874, 10.06054082845393, 10.38878070631201, 10.86871952040400, 11.37724669255844, 11.91153690860612, 12.39635445550610, 12.74717521646160, 13.46986736517781, 13.72858694853988

Graph of the $Z$-function along the critical line