L(s) = 1 | + (1.21 + 1.16i)2-s + (0.0871 + 1.82i)4-s + (−0.915 + 1.05i)8-s + (0.928 − 0.371i)9-s + (−0.947 + 0.903i)11-s + (−0.518 + 0.0495i)16-s + (1.56 + 0.625i)18-s − 2.20·22-s + (−0.786 + 0.618i)23-s + (0.235 − 0.971i)25-s + (−1.61 − 1.03i)29-s + (0.409 + 0.322i)32-s + (0.760 + 1.66i)36-s + (0.771 − 0.308i)37-s + (0.186 + 0.215i)43-s + (−1.73 − 1.65i)44-s + ⋯ |
L(s) = 1 | + (1.21 + 1.16i)2-s + (0.0871 + 1.82i)4-s + (−0.915 + 1.05i)8-s + (0.928 − 0.371i)9-s + (−0.947 + 0.903i)11-s + (−0.518 + 0.0495i)16-s + (1.56 + 0.625i)18-s − 2.20·22-s + (−0.786 + 0.618i)23-s + (0.235 − 0.971i)25-s + (−1.61 − 1.03i)29-s + (0.409 + 0.322i)32-s + (0.760 + 1.66i)36-s + (0.771 − 0.308i)37-s + (0.186 + 0.215i)43-s + (−1.73 − 1.65i)44-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.244 - 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.244 - 0.969i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.938784032\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.938784032\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 23 | \( 1 + (0.786 - 0.618i)T \) |
good | 2 | \( 1 + (-1.21 - 1.16i)T + (0.0475 + 0.998i)T^{2} \) |
| 3 | \( 1 + (-0.928 + 0.371i)T^{2} \) |
| 5 | \( 1 + (-0.235 + 0.971i)T^{2} \) |
| 11 | \( 1 + (0.947 - 0.903i)T + (0.0475 - 0.998i)T^{2} \) |
| 13 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 17 | \( 1 + (-0.580 + 0.814i)T^{2} \) |
| 19 | \( 1 + (-0.580 - 0.814i)T^{2} \) |
| 29 | \( 1 + (1.61 + 1.03i)T + (0.415 + 0.909i)T^{2} \) |
| 31 | \( 1 + (0.786 - 0.618i)T^{2} \) |
| 37 | \( 1 + (-0.771 + 0.308i)T + (0.723 - 0.690i)T^{2} \) |
| 41 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 43 | \( 1 + (-0.186 - 0.215i)T + (-0.142 + 0.989i)T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (1.11 + 1.56i)T + (-0.327 + 0.945i)T^{2} \) |
| 59 | \( 1 + (-0.981 - 0.189i)T^{2} \) |
| 61 | \( 1 + (-0.928 - 0.371i)T^{2} \) |
| 67 | \( 1 + (-0.396 + 1.63i)T + (-0.888 - 0.458i)T^{2} \) |
| 71 | \( 1 + (-1.25 + 0.368i)T + (0.841 - 0.540i)T^{2} \) |
| 73 | \( 1 + (0.995 - 0.0950i)T^{2} \) |
| 79 | \( 1 + (1.11 - 1.56i)T + (-0.327 - 0.945i)T^{2} \) |
| 83 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 89 | \( 1 + (0.786 + 0.618i)T^{2} \) |
| 97 | \( 1 + (0.959 - 0.281i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.06574158760829647814109334094, −9.515883982119087195449656645767, −8.038692432969917000884818847439, −7.64391010885453995342421941530, −6.80796357095822767583897871207, −6.04078620788856787493162367053, −5.13500158072987728661375727578, −4.36576810053629015871931720294, −3.61811680187849238465922337481, −2.17675129551046719322700988430,
1.48732436867437307256591231063, 2.60414407257608446010363697295, 3.53786837214564548243546473773, 4.42142220942085164110410386519, 5.29018356376492948981965467904, 5.96356660296916779920996676047, 7.23038461024177858962779639760, 8.109370271819049625454857603176, 9.298747153327053183920394347260, 10.18029974873476184292104996671