L(s) = 1 | + (1.21 + 1.16i)2-s + (0.0871 + 1.82i)4-s + (−0.915 + 1.05i)8-s + (0.928 − 0.371i)9-s + (−0.947 + 0.903i)11-s + (−0.518 + 0.0495i)16-s + (1.56 + 0.625i)18-s − 2.20·22-s + (−0.786 + 0.618i)23-s + (0.235 − 0.971i)25-s + (−1.61 − 1.03i)29-s + (0.409 + 0.322i)32-s + (0.760 + 1.66i)36-s + (0.771 − 0.308i)37-s + (0.186 + 0.215i)43-s + (−1.73 − 1.65i)44-s + ⋯ |
L(s) = 1 | + (1.21 + 1.16i)2-s + (0.0871 + 1.82i)4-s + (−0.915 + 1.05i)8-s + (0.928 − 0.371i)9-s + (−0.947 + 0.903i)11-s + (−0.518 + 0.0495i)16-s + (1.56 + 0.625i)18-s − 2.20·22-s + (−0.786 + 0.618i)23-s + (0.235 − 0.971i)25-s + (−1.61 − 1.03i)29-s + (0.409 + 0.322i)32-s + (0.760 + 1.66i)36-s + (0.771 − 0.308i)37-s + (0.186 + 0.215i)43-s + (−1.73 − 1.65i)44-s + ⋯ |
Λ(s)=(=(1127s/2ΓC(s)L(s)(−0.244−0.969i)Λ(1−s)
Λ(s)=(=(1127s/2ΓC(s)L(s)(−0.244−0.969i)Λ(1−s)
Degree: |
2 |
Conductor: |
1127
= 72⋅23
|
Sign: |
−0.244−0.969i
|
Analytic conductor: |
0.562446 |
Root analytic conductor: |
0.749964 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1127(423,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1127, ( :0), −0.244−0.969i)
|
Particular Values
L(21) |
≈ |
1.938784032 |
L(21) |
≈ |
1.938784032 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 23 | 1+(0.786−0.618i)T |
good | 2 | 1+(−1.21−1.16i)T+(0.0475+0.998i)T2 |
| 3 | 1+(−0.928+0.371i)T2 |
| 5 | 1+(−0.235+0.971i)T2 |
| 11 | 1+(0.947−0.903i)T+(0.0475−0.998i)T2 |
| 13 | 1+(0.654−0.755i)T2 |
| 17 | 1+(−0.580+0.814i)T2 |
| 19 | 1+(−0.580−0.814i)T2 |
| 29 | 1+(1.61+1.03i)T+(0.415+0.909i)T2 |
| 31 | 1+(0.786−0.618i)T2 |
| 37 | 1+(−0.771+0.308i)T+(0.723−0.690i)T2 |
| 41 | 1+(0.959−0.281i)T2 |
| 43 | 1+(−0.186−0.215i)T+(−0.142+0.989i)T2 |
| 47 | 1+(0.5−0.866i)T2 |
| 53 | 1+(1.11+1.56i)T+(−0.327+0.945i)T2 |
| 59 | 1+(−0.981−0.189i)T2 |
| 61 | 1+(−0.928−0.371i)T2 |
| 67 | 1+(−0.396+1.63i)T+(−0.888−0.458i)T2 |
| 71 | 1+(−1.25+0.368i)T+(0.841−0.540i)T2 |
| 73 | 1+(0.995−0.0950i)T2 |
| 79 | 1+(1.11−1.56i)T+(−0.327−0.945i)T2 |
| 83 | 1+(0.959+0.281i)T2 |
| 89 | 1+(0.786+0.618i)T2 |
| 97 | 1+(0.959−0.281i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.06574158760829647814109334094, −9.515883982119087195449656645767, −8.038692432969917000884818847439, −7.64391010885453995342421941530, −6.80796357095822767583897871207, −6.04078620788856787493162367053, −5.13500158072987728661375727578, −4.36576810053629015871931720294, −3.61811680187849238465922337481, −2.17675129551046719322700988430,
1.48732436867437307256591231063, 2.60414407257608446010363697295, 3.53786837214564548243546473773, 4.42142220942085164110410386519, 5.29018356376492948981965467904, 5.96356660296916779920996676047, 7.23038461024177858962779639760, 8.109370271819049625454857603176, 9.298747153327053183920394347260, 10.18029974873476184292104996671