L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s − 0.999·6-s + 8-s + 13-s + (0.5 − 0.866i)16-s + (−0.5 + 0.866i)23-s + (−0.500 − 0.866i)24-s + (−0.5 − 0.866i)25-s + (0.5 − 0.866i)26-s − 27-s − 29-s + (−0.5 − 0.866i)31-s + (−0.5 − 0.866i)39-s + 41-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s − 0.999·6-s + 8-s + 13-s + (0.5 − 0.866i)16-s + (−0.5 + 0.866i)23-s + (−0.500 − 0.866i)24-s + (−0.5 − 0.866i)25-s + (0.5 − 0.866i)26-s − 27-s − 29-s + (−0.5 − 0.866i)31-s + (−0.5 − 0.866i)39-s + 41-s + ⋯ |
Λ(s)=(=(1127s/2ΓC(s)L(s)(−0.266+0.963i)Λ(1−s)
Λ(s)=(=(1127s/2ΓC(s)L(s)(−0.266+0.963i)Λ(1−s)
Degree: |
2 |
Conductor: |
1127
= 72⋅23
|
Sign: |
−0.266+0.963i
|
Analytic conductor: |
0.562446 |
Root analytic conductor: |
0.749964 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1127(275,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1127, ( :0), −0.266+0.963i)
|
Particular Values
L(21) |
≈ |
1.312089140 |
L(21) |
≈ |
1.312089140 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1 |
| 23 | 1+(0.5−0.866i)T |
good | 2 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 3 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 5 | 1+(0.5+0.866i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 13 | 1−T+T2 |
| 17 | 1+(0.5−0.866i)T2 |
| 19 | 1+(0.5+0.866i)T2 |
| 29 | 1+T+T2 |
| 31 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 37 | 1+(0.5+0.866i)T2 |
| 41 | 1−T+T2 |
| 43 | 1−T2 |
| 47 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 53 | 1+(0.5−0.866i)T2 |
| 59 | 1+(−1−1.73i)T+(−0.5+0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(0.5−0.866i)T2 |
| 71 | 1+T+T2 |
| 73 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.02929629718358285413206972134, −9.066800266106310562839259573551, −7.85323380701671271106028131465, −7.39183160453245654258911734337, −6.28590637520615007201096102420, −5.64327155241069703588362568038, −4.25375539432778622411418137841, −3.57607872202454958612393336409, −2.26772748487487028694225720026, −1.28408681354923778933539869819,
1.79034456063027282311271813016, 3.63667066355729846682429716603, 4.38397673477583899584194832421, 5.31880029653584820588693884326, 5.83410849858096410964830666373, 6.75089436009230286956591724389, 7.61004858035604702656352035655, 8.523310950768372098375891448168, 9.564682515641307364691732435632, 10.34341293884542141807261731112