L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s − 0.999·6-s + 8-s + 13-s + (0.5 − 0.866i)16-s + (−0.5 + 0.866i)23-s + (−0.500 − 0.866i)24-s + (−0.5 − 0.866i)25-s + (0.5 − 0.866i)26-s − 27-s − 29-s + (−0.5 − 0.866i)31-s + (−0.5 − 0.866i)39-s + 41-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)2-s + (−0.5 − 0.866i)3-s − 0.999·6-s + 8-s + 13-s + (0.5 − 0.866i)16-s + (−0.5 + 0.866i)23-s + (−0.500 − 0.866i)24-s + (−0.5 − 0.866i)25-s + (0.5 − 0.866i)26-s − 27-s − 29-s + (−0.5 − 0.866i)31-s + (−0.5 − 0.866i)39-s + 41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1127 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.266 + 0.963i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.312089140\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.312089140\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 \) |
| 23 | \( 1 + (0.5 - 0.866i)T \) |
good | 2 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 3 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 - T + T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + T + T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 + T + T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.02929629718358285413206972134, −9.066800266106310562839259573551, −7.85323380701671271106028131465, −7.39183160453245654258911734337, −6.28590637520615007201096102420, −5.64327155241069703588362568038, −4.25375539432778622411418137841, −3.57607872202454958612393336409, −2.26772748487487028694225720026, −1.28408681354923778933539869819,
1.79034456063027282311271813016, 3.63667066355729846682429716603, 4.38397673477583899584194832421, 5.31880029653584820588693884326, 5.83410849858096410964830666373, 6.75089436009230286956591724389, 7.61004858035604702656352035655, 8.523310950768372098375891448168, 9.564682515641307364691732435632, 10.34341293884542141807261731112